
Chia Consensus and Proof of Space Security
Assessment
Chia Network Inc
February 1, 2021

Prepared for
Bill Blanke
Bram Cohen
Gene Hoffman, Jr.
Straya Markovic
Mariano Sorgente

Prepared by
Ava Howell
Aleksandar Kircanski
Ephrayim Kishko

Feedback on this project?
https://my.nccgroup.com/feedback/3d57d875-0446-4bfb-a440-477790182b9d

https://my.nccgroup.com/feedback/3d57d875-0446-4bfb-a440-477790182b9d

Executive Summary
Synopsis
In December 2020 and January 2021, Chia Network Inc.
engaged NCC Group Crypto Services to conduct a secu-
rity assessment of the Chia blockchain implementation.
Chia’s goal is to provide a more equitable coin with a
variety of institutional and non-institutional usages. It
leverages a novel concept called Proof of Space and
Time to offer different incentives when compared to
well-known Proof of Work and Proof of Stake systems.

Source code was provided and the Chia team supported
NCC Group over a dedicated Keybase channel. A
number of conference calls were held, including pre-
kickoff, kickoff, two status updates and a readout. NCC
Group received valuable feedback during the course
of the engagement helping it drive the review in a
meaningful direction. Overall, 30 consultant days were
spent on the project.

Scope
The scope of the engagement included:

• https://github.com/Chia-Network/chia-blockchain:
Python implementation of the Chia consensus
protocol, together with other aspects encompassing
a blockchain node, such as a wallet, cryptography, etc

• https://github.com/Chia-Network/chiapos: C++ im-
plementation of the Proof of Space mechanism
underlying Chia’s consensus

Apart from its usage inside chia-blockchain, the
Chia’s VDF implementation was not a part of this review.

Testing Methodology
Two important pieces of documentation were used
during the review:

• Chia Proof of Space Construction, v1.1: a spec for the
PoS implementation, provided as a PDF

• Chia Consensus: descriptive explanation of the con-
sensus protocol, provided as a google document

The testing strategy was manual code review, while
matching the code to the documentation and using a
baseline set of issues likely to arise in blockchain as the
starting point. The testing methodology also included
some dynamic testing using a dedicated Digital Ocean
instance mostly to validate assumptions derived from
reading the code.

Key findings
• Ambiguous Object Deserialization Scheme Leads to
DoS: Ambiguous (de)serialization of blocks, trans-
actions and other data structures is an unwanted
property in blockchains. Its consequences in terms
of security are somewhat hazy, however, this finding
points out that an ambiguity in deserialization leads
to a DoS attack.

• Peer Ejection by Web Socket Replacement: An arbi-
trary web socket connection between any two nodes
on the network can be disconnected by an attacker.

• Unimplemented Previous Generator Root Validation:
Failure to correctly validate the previous_generat
ors_root field of TransactionsInfo may lead to
broken security assumptions.

• Unimplemented End Of Sub Slot Bundle Validation:
An attacker may advertise bogus end of sub slot and
have nodes fill their caches with invalid information.
This can likely be abused to impede the network’s
consensus progression.

• Excess Storage Denial of Service Vectors: A misbe-
having node may upload excess amounts of data
to legitimate nodes on the network, impeding their
normal functioning capabilities.

Proof of Space security assessment notes are provided
in Section Proofs of Space Implementation Notes on
page 4.

Notes and Observations
When it comes to consensus, NCC Group consultants
noted two unimplemented consensus controls which
are likely of high importance (see finding NCC-CHIA001-
011 on page 14 and finding NCC-CHIA001-007 on
page 11). Due to TODOs in the code, it is assumed that
at least at some point in time, these issues were known
to the Chia Team.

In terms of network processing and node interaction,
a number of issues was identified, such as Denial of
Service via deserialization, peer ejection and Transact
ionAck message spoofing. Overall, it makes sense to
assume the blockchain network environment is a highly
adversarial and explore misbehaving scenarios during
networking code development.

Async-style programming is prone to race conditions.
One example is discussed in finding NCC-CHIA001-
012 on page 21. Consider spending engineering time
devoted to further exploration of how this type of issues
can put a node in an inconsistent consensus state.
In terms of issues common to Python such as typing

2 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/Chia-Network/chia-blockchain
https://github.com/Chia-Network/chiapos
https://www.chia.net/assets/Chia_Proof_of_Space_Construction_v1.1.pdf
https://docs.google.com/document/d/1tmRIb7lgi4QfKkNaxuKOBHRmwbVlGL4f7EsBDr_5xZE/edit#heading=h.4cnt51q9b24t

problems, several borderline issues were identified, but
these did not lead to practically exploitable bugs.

As for private Chia node communication (such as
between Full Nodes and private Time Lord nodes), the
usage of TLS was reviewed and no issues were found.
Regardless, TLS in this context may be replaced by the
Noise protocol.1 In particular, Chia intranets likely do
not need crypto agility, X.509 processing capability and
other unnecessary functionalities offered by TLS stacks.

When it comes to future reviews, consider reviewing
smart contract capabilities together with specific smart
contracts and coin features (e.g., colored coins). Since
consensus logic is rather complex, it makes sense to
dedicate more time on logical consensus review (e.g.,
block and VDF parameter validation and interaction).

1http://www.noiseprotocol.org/noise.html
3 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

http://www.noiseprotocol.org/noise.html

Proofs of Space Implementation Notes
The Chia Proof-of-Space protocol provides a core mechanism around which consensus can be built. It is described
principally in Beyond Hellman’s Time-Memory Trade-Offs with Applications to Proofs of Space2 and the Chia Proof of Space
Construction3 papers.

During the course of the security assessment, the correctness and safety of the Proof of Space implementation used
in the Chia full-node implementation4 was examined. No high severity vulnerabilities were discovered in the plotting,
proving, or the crucial verification components. The implementations of the underlying symmetric cryptography used
in the Chia Proof of Space construction, ChaCha8 and BLAKE3, were also examined and found to conform with the
reference implementations.

Implementation Notes
The following notes are not findings per se, however they are aspects of the chiapos implementation that were noted
during review.

chiapos API Does Not Enforce k Parameter Bounds
It was noted that the API exposed by chiapos, both through the command-line interface aswell as the python bindings,
does not enforce the integer bounds on the size parameter k during proof verification. Thismay lead to incorrect usage
of the chiapos library. In the case of the principal user of chiapos, the Chia python blockchain implementation, it was
found that the check around k was performed by the caller:

...snip...
def verify_and_get_quality_string(

self,
constants: ConsensusConstants,
original_challenge_hash: bytes32,
signage_point: bytes32,

) -> Optional[bytes32]:
if (self.pool_public_key is None) and (self.pool_contract_puzzle_hash is None):

return None
if (self.pool_public_key is not None) and (self.pool_contract_puzzle_hash is not None):

return None
if self.size < constants.MIN_PLOT_SIZE:

return None
if self.size > constants.MAX_PLOT_SIZE:

return None
...snip...

However, this design breaks with the principle of misuse-resistance: that is, it should be difficult for a caller to use
a security-oriented API incorrectly. As such, it is recommended to move the validation of k to chiapos so that the
responsibility of validating k is removed from callers.

Use of Uninitialized Array Memory
The chiapos implementation is written in C++, which does not provide any memory safety guarantees. As such, time
was taken in attempting to identify any potential memory unsafety which could be exploited by an attacker in order to
exfiltrate system information, cede control flow of the Chia application, or perform other undefined behavior. Part of
the analysis performed to this end was to perform fuzzing, a type of automated mutation testing, of the parsing of the
proof data π. During the run of the fuzzer, no crashes or other unsafety were noted, however the use of uninitialized
memory was detected using LLVM/Clang’s MemorySanitizer:

// Performs one evaluation of the F function on input L of k bits.
inline Bits CalculateF(const Bits& L) const

2https://eprint.iacr.org/2017/893.pdf
3https://www.chia.net/assets/Chia_Proof_of_Space_Construction_v1.1.pdf
4https://github.com/Chia-Network/chiapos

4 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

{
// ...snip...

uint8_t ciphertext_bytes[kF1BlockSizeBits / 8];// NOTE: uninitialized memory
Bits output_bits;

// This counter is used to initialize words 12 and 13 of ChaCha8
// initial state (4x4 matrix of 32-bit words). This is similar to
// encrypting plaintext at a given offset, but we have no
// plaintext, so no XORing at the end.
chacha8_get_keystream(&this->enc_ctx_, counter, 1, ciphertext_bytes);
Bits ciphertext0(ciphertext_bytes, block_size_bits / 8, block_size_bits);

// ...snip...

Note that the ciphertext_bytes array is not explicitly initialized (e.g., with ... = { };), therefore it contains un-
defined values. In general, operating on such values can be dangerous as they can contain bytes from sensitive
system memory, or attacker controlled memory. In the case of chiapos, the values are used, however they are simply
immediately overwritten as output in chacha8_get_keystream:

// ...snip...
U32TO8_LITTLE(c + 0, x0);
U32TO8_LITTLE(c + 4, x1);
U32TO8_LITTLE(c + 8, x2);
U32TO8_LITTLE(c + 12, x3);
U32TO8_LITTLE(c + 16, x4);
U32TO8_LITTLE(c + 20, x5);
U32TO8_LITTLE(c + 24, x6);
U32TO8_LITTLE(c + 28, x7);
U32TO8_LITTLE(c + 32, x8);
U32TO8_LITTLE(c + 36, x9);
U32TO8_LITTLE(c + 40, x10);
U32TO8_LITTLE(c + 44, x11);
U32TO8_LITTLE(c + 48, x12);
U32TO8_LITTLE(c + 52, x13);
U32TO8_LITTLE(c + 56, x14);
U32TO8_LITTLE(c + 60, x15);

// ...snip...

As such, there should be no practical security risk arising from this use of uninitialized memory. However, to ensure ro-
bustness against potential future code changes and to conform with best practices, NCC Group recommends explicitly
initializing ciphertext_bytes.

5 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 25.

Title Status ID Risk
Peer Ejection by Web Socket Replacement Reported 002 High
Ambiguous Object Deserialization Scheme Leads to DoS Reported 004 High
Unimplemented End Of Sub Slot Bundle Validation Reported 007 High
Excess Storage Denial of Service Vectors Reported 010 Medium
Unimplemented Previous Generator Root Validation New 011 Medium
Chia Node Private Key File Permissions Reported 003 Low
P2P Message Response Object Mismatches Reported 005 Low
Chia Node Private Key File Persists on Filesystem after Uninstall Reported 006 Low
Private Key and Mnemonic Secret Linger in Memory After Key Deletion Reported 009 Low

Race Condition via Fake TransactionAckMessages In Wallet Nodes New 012 Low

Data Types not Checked on Payload IDs and Function Names Reported 001 Informational

6 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Finding Details
Finding Peer Ejection by Web Socket Replacement

Risk High Impact: High, Exploitability: High

Identifier NCC-CHIA001-002

Status Reported

Category Denial of Service

Component chia-blockchain

Location https://github.com/chia-network/chia-blockchain/blob/76729e64/src/server/server.py#L183

Impact An arbitrary web socket connection between any two nodes on the network can be discon-
nected by an attacker.

Description Consensus-related communication between the nodes on the Chia network runs over web
sockets. The first exchanged message between two newly connected nodes is the hand-
shake message. Apart from network ID, protocol version and other information, the message
includes the node_id bytes32 field. This finding evaluates what is the consequence of an
attacker’s ability to freely choose the node_id value.

Consider what happens when a node’s listener receives the web socket connection. A WS
ChiaConnection object is created and the handshake is performed. An entry is added to
the all_connections dict, which holds all of the connections indexed by the peer_node_id
value. As mentioned, this field is attacker/peer controlled — it comes from the remote peer’s
handshake message.

When the newly created WSChiaConnection object is created, it needs to be placed inside
the all_connections dict:

async def connection_added(self, connection: WSChiaConnection,
on_connect=None):
if connection.peer_node_id in self.all_connections:

con = self.all_connections[connection.peer_node_id]
await con.close()

self.all_connections[connection.peer_node_id] = connection
if connection.connection_type is not None:

self.connection_by_type[connection.connection_type][connection.
peer_node_id] = connection

if on_connect is not None:
await on_connect(connection)

else:
self.log.error(

f"Invalid connection type for connection {connection}")

If the incoming peer claims an existing peer_node_id, the original connection is closed.
Nothing appears to prevent participants on the network from learning other nodes’ IDs and
as such an attacker on the network should be able to disconnect arbitrary web socket links
between any two peers.

Note: The handshake parameters such as network_id are not validated nor ensured to
match between connecting client. It is assumed this is the short-term development roadmap.

Recommendation If a connection between the two peers is broken, peers may end up with stale, non-functional
connections in their connection store. This could happen due to a network connection prob-

7 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/chia-network/chia-blockchain/blob/76729e64/src/server/server.py#L183
https://github.com/chia-network/chia-blockchain/blob/76729e64285c85d3bfcaf9a1225d848a86c4d844/src/server/server.py#L142
https://github.com/chia-network/chia-blockchain/blob/76729e64285c85d3bfcaf9a1225d848a86c4d844/src/server/server.py#L154
https://github.com/chia-network/chia-blockchain/blob/76729e64285c85d3bfcaf9a1225d848a86c4d844/src/server/ws_connection.py#L131

lem or one peer process being killed, resulting in the client disconnecting without the accord-
ing web socket CLOSE message. The only way to deal with this issue is to occasionally try to
write to web sockets in the store and consider the connection as broken if the write does not
succeed. As such, to deal with stale/broken connections, web socket heartbeat5 should be
used and stale connections should be pruned accordingly.

Currently, the notion of a peer node ID is used in methods such as send_to_others and
send_to_all_except, in order to identify a subset of nodes that messages should be sent
to. It should be noted that such use cases could be implemented even if the peer node ID
would not originate from the actual sender. Consider swapping out peer-originating node IDs
with internal peer IDs, which are just random numbers generated by the node. Alternatively,
peer node IDs could be bound by TLS certificates, which is assumed to not be doable as not
all connections are meant to be authenticated.

To summarize, the recommendation is to implement a web socket heartbeat in order to keep
the connection store fresh and use internally generated (as opposed to client-provided) node
IDs for internal peer handling.

5Sections 5.5.2 and 5.5.3 in https://tools.ietf.org/html/rfc6455.

8 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://tools.ietf.org/html/rfc6455

Finding Ambiguous Object Deserialization Scheme Leads to DoS

Risk High Impact: High, Exploitability: High

Identifier NCC-CHIA001-004

Status Reported

Category Other

Component chia-blockchain

Location https://github.com/chia-network/chia-blockchain/blob/76729e64285c85d3bfcaf9a1225d848
a86c4d844/src/util/streamable.py#L129

Impact Ambiguous (de)serialization of blocks, transactions and other data structures is an unwanted
property in blockchains. Its consequences in terms of security are somewhat hazy, however,
this finding points out that an ambiguity in deserialization leads to a DoS attack.

Description In general, the mapping between object attribute content and its serialized representations
should be a one-to-one mapping. This rule could be violated in two ways (1) multiple objects
serialize to a colliding data blob and (2) multiple data blobs de-serialize to a single object.
While violation (1) would be a serious one (as it wouldmean that a signature validatesmultiple
objects), this finding discusses (2), which shouldn’t exist either as it can lead to unforeseen
issues.

To encode and decode objects such as transactions and blocks, Chia relies on a custom
(de)serialization scheme, defined in util/streamable.py. Data to become the content of
an object’s attribute is parsed using the following function:

def parse_one_item(cls: Type[cls.__name__], f_type: Type, f: BinaryIO):
type: ignore
inner_type: Type
if is_type_List(f_type):

inner_type = get_args(f_type)[0]
full_list: List[inner_type] = [] # type: ignore
wjb assert inner_type != get_args(List)[0] # type: ignore
list_size: uint32 = uint32(int.from_bytes(f.read(4), "big"))
for list_index in range(list_size):

full_list.append(cls.parse_one_item(inner_type, f))
type: ignore

return full_list
if is_type_SpecificOptional(f_type):

inner_type = get_args(f_type)[0]
is_present: bool = f.read(1) == bytes([1])
if is_present:

return cls.parse_one_item(inner_type, f) # type: ignore
else:

return None

Suppose the entry the parser is expecting to read is an Optional[uint32]. The second if
condition is triggered and an f.read(1) will happen to read out whether the optional value
is provided or not. While this is correct, it should be noted that the f.read(1) will not throw
an exception in the case of EOF. In that case, the is_present field will simply be false and
the if is_present condition will not check out.

In other words, having or not having a zero byte to denote that there’s no Optional field

9 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/chia-network/chia-blockchain/blob/76729e64285c85d3bfcaf9a1225d848a86c4d844/src/util/streamable.py#L129
https://github.com/chia-network/chia-blockchain/blob/76729e64285c85d3bfcaf9a1225d848a86c4d844/src/util/streamable.py#L129

doesn’t make a difference. If at the end of the stream, the parser is expecting an Optional
value, removing or adding a zero suffix does not change the final object (in both cases, the
Optional field at the end will be a None). As such, there can exist multiple data blobs that get
de-serialized to the same object. A similar issue exists with some of the other types treated
by the parse_one_item function, such as bool.

Somewhat unexpectedly this property can be converted into a DoS vector. Consider the
following class:

@dataclass(frozen=True)
@streamable
class SubEpochChallengeSegment(Streamable):

sub_epoch_n: uint32
sub_slots: List[SubSlotData]

The SubSlotData consists only of Optional fields:

@dataclass(frozen=True)
@streamable
class SubSlotData(Streamable):

if infused
proof_of_space: Optional[ProofOfSpace]
[... SNIP ...]
rc_slot_end_info: Optional[VDFInfo]

Suppose the parser is deserializing the SubEpochChallengeSegment object. In serialized
form, the sub_slots: List[SubSlotsData] field starts with a 4-byte length, followed by a
number of Optional fields. The length may be a large number such as 232 − 1. Due to
the property explained above, the byte string can well end there and there’s no need for
232−1 entries to follow in the data blob. As such, for the cost of sending a short message, an
attacker got the node to perform a large number of steps and also consume a large amount
of memory.

Reproduction Steps Run the following program:

from dataclasses import dataclass
from typing import List, Optional

from src.util.streamable import Streamable, streamable

from src.types.weight_proof import SubEpochChallengeSegment

x = SubEpochChallengeSegment(3, [])
print(x)
print(bytes(x))

dos = SubEpochChallengeSegment.from_bytes(b'\x00\x00\x00\x03\xff\xff\xff\xff')

Recommendation Bail from the parse_one_itemmethod if the expected bytes aren’t there. In addition, ensure
that the data blob consumed by the parser is not followed by any additional bytes. In general,
ensure a one-to-one mapping between object content and its serialized form.

10 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Finding Unimplemented End Of Sub Slot Bundle Validation

Risk High Impact: High, Exploitability: High

Identifier NCC-CHIA001-007

Status Reported

Category Data Validation

Component chia-blockchain

Location https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985
d1294f22f/src/full_node/full_node_store.py#L175

Impact An attacker may advertise bogus end of sub slot and have nodes fill their caches with invalid
information. This can likely be abused to impede the network’s consensus progression.

Description The Chia network’s P2P communication includes advertising new signage points using the
new_signage_point_or_end_of_subslot API endpoint.6 If the receiving node deems ap-
propriate, it requests the actual signage point based on the advertised data. In some cases,
instead of the signage point, the receiving node will request the end of sub slot bundle. This
happens if the node does not have the end of sub slot information for the advertised signage
point, or if the previous sub slot information is unknown, see full_node_api.py:354.

The requested sub slot information is ingested through the respond_end_of_sub_slot end-
point and takes an EndOfSubSlotBundle as a parameter:

class EndOfSubSlotBundle(Streamable):
challenge_chain: ChallengeChainSubSlot
infused_challenge_chain: Optional[InfusedChallengeChainSubSlot]
reward_chain: RewardChainSubSlot
proofs: SubSlotProofs

A consequence of calling respond_end_of_subslot is the creation of a new subslot entry,
see the new_finished_sub_slot function:

def new_finished_sub_slot(
self,
eos: EndOfSubSlotBundle,
sub_blocks: Dict[bytes32, SubBlockRecord],
peak: Optional[SubBlockRecord],

) -> Optional[List[timelord_protocol.NewInfusionPointVDF]]:
"""
Returns false if not added. Returns a list if added. The list contains al

l infusion points that depended
on this sub slot
TODO: do full validation here
"""

[...SNIP...]

6Block production in the Chia blockchain happens inside sub-slots. Each sub-slot in the challenge and reward chains
is divided into SIGNAGE_POINTS_PER_SUB_SLOT smaller VDFs and each signage point records these intermediary VDF
outputs. A related notion is the EndOfSubSlotBundle which records the VDF state of the three chains at sub slot
endpoints.

11 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985d1294f22f/src/full_node/full_node_store.py#L175
https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985d1294f22f/src/full_node/full_node_store.py#L175

if eos.challenge_chain.challenge_chain_end_of_slot_vdf.challenge !=
last_slot_ch:
This slot does not append to our next slot
This prevent other peers from appending fake VDFs to our cache
return None

[...SNIP...]

self.finished_sub_slots.append((eos, [None] *
self.constants.NUM_SPS_SUB_SLOT, total_iters))

While the new_finished_sub_slot method validates whether the three chain’s VDF chal-
lenges inside the end of sub slot bundle lean on the ongoing context, various other end of
sub slot parameters are not validated. This includes VDF proofs, VDF number of iterations
and parameters specific to the challenge chain.

The end of sub slot entries inside finished_sub_slots participate in several consensus-
related code paths. For instance, consider the full_node_store.py:new_signage_poin
t method, used to process new signage points. It iterates through the known end of sub
slot entries, identifies the one corresponding to the processed signage point and relies on
the claimed end of sub slot iteration number. Since this number has not been necessarily
validated, the consensus-related decision made by the new_signage_point function may be
invalid.

Recommendation Address the TODOs in new_finished_sub_slot function by fully validating the end of sub
slot information. Commented out code validates the VDF proofs inside the end of sub slot
data snippet, however, this does not appear to be enough as not all the three chains are
validated to lean on the last known end of sub slot entry.

12 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Finding Excess Storage Denial of Service Vectors

Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-CHIA001-010

Status Reported

Category Data Validation

Component chia-blockchain

Location https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985
d1294f22f/src/full_node/full_node.py#L956

Impact A misbehaving node may upload excess amounts of data to legitimate nodes on the network,
impeding their normal functioning capabilities.

Description There have been severalmemory/storage exhaustionDenial of Service vectors in Bitcoin. Such
vectors relied on lack of storage size controls around orphan blocks,7 transaction mempool,8
orphan transactions,9 etc. Memory stores that ingest data without any cost for the attacker
are candidates for such storage exhaustion vectors. An additional condition required is a lack
of an effective memory store item eviction strategy.

The Chia full node implementation keeps a number of caches during consensus processing:

def __init__(self):
self.candidate_blocks = {}
self.seen_unfinished_blocks = set()
self.disconnected_blocks = {}
self.unfinished_blocks = {}
self.finished_sub_slots = []
self.future_eos_cache = {}
self.future_sp_cache = {}
self.future_ip_cache = {}

The last three caches do not appear to implement an eviction policy and can be added for free
(with the exception of future_sp_cache which is not yet fully implemented). For example,
processing new infusion point VDFs includes storing them in the full_node_store.futur
e_ip_cache map, in the case they don’t refer to a known previous block. The new infusion
point can store byte strings of arbitrary length (inside VDF proofs) and is not validated before
being used. Similar goes for full_node_store.future_eos_cache and future_sp_cache.

Recommendation Implement an overall size limit on the mentioned caches, since just limiting the number of
entries won’t be sufficient. If the size threshold is passed, consider ejecting a random element
from the store, or a chosen minimal element strategy (where the definition of “minimal” is
chosen accordingly, for instance, the most stale element).

7https://github.com/bitcoin/bitcoin/commit/bbde1e99c89392
8https://www.reddit.com/r/Bitcoin/comments/3ny3tw/with_a_1gb_mempool_1000_nodes_are_now_down/
9https://en.bitcoin.it/wiki/CVE-2012-3789

13 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985d1294f22f/src/full_node/full_node.py#L956
https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985d1294f22f/src/full_node/full_node.py#L956
https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985d1294f22f/src/full_node/full_node.py#L956
https://github.com/bitcoin/bitcoin/commit/bbde1e99c89392
https://www.reddit.com/r/Bitcoin/comments/3ny3tw/with_a_1gb_mempool_1000_nodes_are_now_down/
https://en.bitcoin.it/wiki/CVE-2012-3789

Finding Unimplemented Previous Generator Root Validation

Risk Medium Impact: High, Exploitability: Undetermined

Identifier NCC-CHIA001-011

Status New

Category Data Validation

Component chia-blockchain

Location https://github.com/Chia-Network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e4
43b51bc8b/src/consensus/block_body_validation.py#L90 (validate_block_body())

Impact Failure to correctly validate the previous_generators_root field of TransactionsInfomay
lead to broken security assumptions.

Description A Chia FullBlock contains an optional field, transactions_info, which contains the reward
chain foliage data. The TransactionsData struct has the following structure:

@dataclass(frozen=True)
@streamable
class TransactionsInfo(Streamable):

Information that goes along with each transaction block
previous_generators_root: bytes32 # This needs to be a tree hash
generator_root: bytes32 # This needs to be a tree hash
aggregated_signature: G2Element
fees: uint64 # This only includes user fees, not block rewards
cost: uint64
reward_claims_incorporated: List[Coin]

These critical fields, such as the aggregated_signature and generator_root, are validated
during full block body validation. However, previous_generators_root is not validated:

5. The prev generators root must be valid
TODO(straya): implement prev generators

6. The generator root must be the tree-
hash of the generator (or zeroes if no generator)

if block.transactions_generator is not None:
if block.transactions_generator.get_tree_hash() !=

block.transactions_info.generator_root:
return Err.INVALID_TRANSACTIONS_GENERATOR_ROOT

else:
if block.transactions_info.generator_root != bytes([0] * 32):

return Err.INVALID_TRANSACTIONS_GENERATOR_ROOT

Failing to validate that previous_generators_root in the correct previous tree hash may
lead to broken security assumptions in the foliage chain or other systems that rely on the
correctness of previous_generators_root. NCC Group noted that previous_generato
rs_root is not currently used in consensus logic, which is likely why the validation logic is
unimplemented.

Recommendation As the TODOnotes, ensure correct validation of previous_generators_root is implemented
when previous_generators_root is implemented.

14 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/Chia-Network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e443b51bc8b/src/consensus/block_body_validation.py#L90
https://github.com/Chia-Network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e443b51bc8b/src/consensus/block_body_validation.py#L90

Finding Chia Node Private Key File Permissions

Risk Low Impact: Medium, Exploitability: High

Identifier NCC-CHIA001-003

Status Reported

Category Configuration

Component chia-blockchain

Location ~/.chia/beta-1.0b19.dev1/config/trusted.key

Impact The overall security posture of the Chia node is weakened. A cross-user private key read is
possible.

Description Upon initialization, the Chia node generates a private key used for authentication purposes.
The file permissions include a flag that allows all users on the Unix system to read the file:

~/.chia/beta-1.0b19.dev1/config$ ls -l
total 16
-rw-rw-r-- 1 user user 6921 Jan 1 09:20 config.yaml
-rw-rw-r-- 1 user user 1038 Jan 1 09:20 trusted.crt
-rw-rw-r-- 1 user user 1675 Jan 1 09:20 trusted.key

The trusted.key file contains raw key material.

Recommendation Set the appropriate umask before creating the file (see the initialize_ssl function in in
it.py). Consider enforcing the correct file policy by bailing if the trusted.key file allows
world-reads.

15 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Finding P2P Message Response Object Mismatches

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-CHIA001-005

Status Reported

Category Data Validation

Component chia-blockchain

Location https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985
d1294f22f/src/wallet/wallet_node.py#L413

https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985
d1294f22f/src/full_node/full_node.py#L438

Impact A misbehaving node on the network can respond to P2P messages with messages that dese-
rialize to invalid object types. This will not be detected and cause exceptions or invalid logic
execution in the sending client.

Description The P2P message exchange workflows include a scenario where a node sends a request and
waits for the receiving node’s reply. This is handled by the create_request function. The
request and reply messages are tied together by request IDs. The raw response message is
in the result variable in the code snippet (see ws_connection.py):

def __getattr__(self, attr_name: str):
TODO KWARGS
async def invoke(*args, **kwargs):

attribute = getattr(class_for_type(self.connection_type), attr_name,
None)

if attribute is None:
raise AttributeError(f"bad attribute {attr_name}")

msg = Message(attr_name, args[0])

result = await self.create_request(msg, 60)

if result is not None:
ret_attr = getattr(class_for_type(self.local_type),

result.function, None)

req_annotations = ret_attr.__annotations__
req = None
for key in req_annotations:

if key == "return" or key == "peer":
continue

else:
req = req_annotations[key]

assert req is not None
result = req(**result.data)

return result

The raw response is converted to a type that’s specified by the result.function name from
the response. Conceivably, the responder may set result.function to an arbitrary API call
and get the resulting object to be an arbitrary type allowed by the API list of functions.

16 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985d1294f22f/src/wallet/wallet_node.py#L413
https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985d1294f22f/src/wallet/wallet_node.py#L413
https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985d1294f22f/src/full_node/full_node.py#L438
https://github.com/chia-network/chia-blockchain/blob/f50a372b509d42bfd63d20de3abf985d1294f22f/src/full_node/full_node.py#L438

As such, in the request-reply workflow, it is necessary for the client code to validate the type
of the response object. This is done fairly consistently, however, a few exceptions are noted
in this finding.

As specified by full_node.py:

for peer in peers_with_peak:
if peer.closed:

to_remove.append(peer)
continue

response = await peer.request_sub_blocks(request)
if response is None:

peers_to_remove.append(peer)
continue

if isinstance(response, RejectSubBlocks):
peers_to_remove.append(peer)
continue

elif isinstance(response, RespondSubBlocks):
success = await

self.receive_sub_block_batch(response.sub_blocks, peer)
if success is False:

await peer.close()
continue

else:
batch_added = True
break

for peer in to_remove:
peers_with_peak.remove(peer)

The intent in the code snippet is to remove peers with invalid responses, however, a removal
will not happen if an object is neither None, RejectSubBlocks nor RespondSubBlocks.

See also wallet_node.py:

weight_request = RequestProofOfWeight(header_block.
sub_block_height, header_block.header_hash)

weight_proof_response: RespondProofOfWeight = await peer.
request_proof_of_weight(weight_request)

if weight_proof_response is None:
return

weight_proof = weight_proof_response.wp
if self.wallet_state_manager is None:

return
valid, fork_point = self.wallet_state_manager.

weight_proof_handler.validate_weight_proof(weight_proof)

If the object crafted from the response happens to have wp attribute, it will be passed to
validation logic, even though the object doesn’t necessarily have to be of correct type.

Recommendation Consider extending the create_request API to specify allowed return types. This would
make the code more robust when it comes to handling unexpected objects received from
the responder.

17 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Finding Chia Node Private Key File Persists on Filesystem after Uninstall

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-CHIA001-006

Status Reported

Category Data Exposure

Component chia-blockchain

Location C:\Users\<USERNAME>\.chia\beta-1.0b21\config\trusted.key

Impact Sensitive key material such as a private key is still available on the file system after user
uninstall. An incomplete uninstall process may lead to a false sense of security.

Description Analyzing the uninstall process in Windows for the Chia blockchain application showed that
the trusted.key file containing a private key is still persisting on the file systemafter uninstall.
Furthermore, this was also evident based on the C:\Users\<USERNAME>\.chia\beta-1.0b
21\ directory available after uninstall.

Recommendation Application uninstall should not leave any unintended/sensitive files on the file system.

18 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Finding Private Key and Mnemonic Secret Linger in Memory After Key Deletion

Risk Low Impact: High, Exploitability: Low

Identifier NCC-CHIA001-009

Status Reported

Category Data Exposure

Component chia-blockchain

Location start_wallet.exe

Impact Attackers with access to process memory can see sensitive wallet information after users
explicitly delete their key.

Description Regular application usage showed that the secret wallet information was still accessible after
the user deleted their key. Secret information such as the private key and themnemonic were
available in memory dumps which can then be re-used to recover the wallet. This became
evident based on the start_wallet.exe process memory dump

Reproduction Steps 1. Launch the application (Chia.exe)

19 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

2. Create a new private key
3. Click to see private key and note contents (ex : Private key & seed)
4. Download process hacker at https://sourceforge.net/projects/processhacker/
5. Search for start_wallet.exe in process hacker
6. Right click start_wallet.exe -> Properties -> Memory -> Strings
7. Enter private key/seed for search to display copies in memory

Recommendation Restart the application after key deletion to wipe any potentially sensitive artifacts.

20 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://sourceforge.net/projects/processhacker/

Finding Race Condition via Fake TransactionAckMessages In Wallet Nodes

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-CHIA001-012

Status New

Category Data Validation

Component chia-blockchain

Location https://github.com/chia-network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e4
43b51bc8b/src/wallet/wallet_node_api.py#L64

Impact During re-orgs, malicious nodes may be able to prevent wallet nodes from re-broadcasting
pending transactions. In addition, if a wallet node is connected to just one full node, this
full node can prevent the wallet node from broadcasting transactions to future full nodes the
wallet connects to.

Description Wallet nodes need a mechanism to ensure that the transactions they broadcast reach a suffi-
cient number of nodes. This is complicated by the fact that, during re-orgs, some transactions
need to be rebroadcasted by wallet nodes, even if they were sent out successfully in the past.

In Chia, this is implemented by counting the TransactionAck replies from full nodes. The
issue this finding discusses is that there’s insufficient authentication on TransactionAck
messages, which potentially allows full nodes to impede wallet nodes’ ability to correctly
broadcast transactions.

The TransactionAck API endpoint identifies the transaction by a supplied ID and increases
the transaction’s record sent counter. This is done using the increment_sentmethod:

async def increment_sent(self, id: bytes32, name: str, send_status:
MempoolInclusionStatus, err: Optional[Err]) -> bool:
"""
Updates transaction sent count (Full Node has received spend_bundle and s

ent ack).
"""

current: Optional[TransactionRecord] = await
self.get_transaction_record(id)

if current is None:
return False

sent_to = current.sent_to.copy()

err_str = err.name if err is not None else None
append_data = (name, uint8(send_status.value), err_str)

Don't increment count if it's already sent to othis peer
if append_data in sent_to:

return False

sent_to.append(append_data)

tx: TransactionRecord = TransactionRecord(
confirmed_at_sub_height=current.confirmed_at_sub_height,
confirmed_at_height=current.confirmed_at_height,

21 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/chia-network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e443b51bc8b/src/wallet/wallet_node_api.py#L64
https://github.com/chia-network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e443b51bc8b/src/wallet/wallet_node_api.py#L64

created_at_time=current.created_at_time,
to_puzzle_hash=current.to_puzzle_hash,
amount=current.amount,
fee_amount=current.fee_amount,
confirmed=current.confirmed,
sent=uint32(current.sent + 1),

As specified by the first highlighted snippet, the increment_sent() function finds the on-
going transaction record and validates if the peer (identified by peer’s name) already sent a
TransactionAck message. In the second highlighted snippet, the sent value is increment.
The constructed TransactionRecord overwrites the previous record, as the primary key of
the corresponding database table is the bundle ID. The sent_to list accumulates the state as
to what nodes increased the sent counter in the past.

It should be noted that the sent_to list validation in the first highlighted snippet above is not
sufficient. The sender of the TransactionAck message can vary the send_status.value
and err_str response fields in order to trigger processing of not just one TransactionAck
message.

Once the sent counter is beyond a threshold, the transaction is not re-broadcasted anymore.
As such, once the transaction ID is known to a malicious participants on the network, nothing
appears to prevent them from increasing the wallet node’s sent counter for that particular
transaction, assuming there is a “live” transaction entry in the wallet node’s DB. As for the
consequences:

• During re-orgs, the sent counter gets reset to zero. The transaction ID is known to other
nodes before the transactions are re-broadcasted. As such, during re-orgs, wallet nodes
may be vulnerable to fake TranasctionAck messages from full nodes they connect to.
Now, the time window for such TransactionAckmessages to arrive is small and is between
async task suspensions: the counter is reset in the database and the _resend_queue task
gets placed on the event loop here. It is theoretically possible that in between the trans-
action counter reset and the _resend_queue call, forged TransactionAck messages get
processed and inflate the counter, resulting in messages never re-broadcasted.

• Re-orgs aside, if the wallet node is connected to just one full node, this full node could
orchestrate a number of fake TransactionAck messages referring to that transaction,
thereby preventing the transaction going out the gate altogether. If, however, the node is
connected to multiple nodes, fully preventing the transaction from reaching multiple nodes
does not appear doable.

• As for a direct attack, in which a wallet node is simply prevented from broadcasting a trans-
action does not appear possible because the transaction ID is unknown and Chia wallet
nodes broadcast new transactions to all full nodes they are connected to. This finding is
rated with low severity due to these considerations.

For reference, links to the source code are provided below. The receiving full nodes are
expected to answer to transaction messages with a TransactionAck message. For each
received TransactionAck message, wallet nodes decrease a counter that’s kept for that
particular transaction. Currently, once four TransactionAck messages are received, the
transaction message will not be re-broadcasted anymore.

Recommendation If the sent_to list is modified to include only the node ID (and not the error message and
status), each node will be able to ACK a transaction only once. It should be noted that in
theory this does not fully resolve the issue. Technically, a sufficiently large subset of full nodes
the wallet connects to could still collude and inflate the counter for any message. Since it’s

22 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/chia-network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e443b51bc8b/src/wallet/wallet_transaction_store.py#L241
https://github.com/chia-network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e443b51bc8b/src/wallet/wallet_node.py#L215
https://github.com/chia-network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e443b51bc8b/src/full_node/full_node_api.py#L1008
https://github.com/chia-network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e443b51bc8b/src/wallet/wallet_transaction_store.py#L265
https://github.com/chia-network/chia-blockchain/blob/b82f3ba8a2953de12bddf5c5d6a33e443b51bc8b/src/wallet/wallet_node.py#L267

the wallet node that chooses the full nodes it connects to, this appears as a minor issue and
could be accepted as a known risk if the sent_to list entries are identified only by node IDs.

23 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Finding Data Types not Checked on Payload IDs and Function Names

Risk Informational Impact: Low, Exploitability: None

Identifier NCC-CHIA001-001

Status Reported

Category Data Validation

Component chia-blockchain

Location https://github.com/chia-network/chia-blockchain/blob/76729e64/src/server/ws_connection.p
y#L309

Impact When Chia nodes decode network messages, the message’s Payload ID is fully unconstrained
and can be of any type. To avoid any unforeseen issues in future releases, enforcing types on
these fields should be considered.

Description Chia’s networkmessages are CBOR-encoded dictionaries, whichmust include three key values
— the message’s function name, the message data and the payload ID — and can contain
an arbitrary number of other key/value entries that are ignored by the implementation. The
function name decides what function gets called and the message data is expected to be
another dictionary, which specifies the API function’s arguments. As specified by the @api_re
quest decorator (see util/api_decorators.py), the supplied dictionaries are converted to
objects and type checking is performed on initialization of those objects, see util/type_ch
ecking.py. The above detailed procedure is critical for avoiding passing arbitrary types into
the consensus-critical code paths.

This finding notes that some type-relaxed processing is still present at the layer before consen-
sus. In particular, Payload and Message classes are not decorated with the @cbor_message
decorator and as such their fields can get decoded to arbitrary types:

@dataclass
class Message:

Function to call
function: str
Message data for that function call
data: Any

@dataclass
class Payload:

Message payload
msg: Message
payload id
id: Optional[bytes8]

As for the Payload.id field, it can take any type and that type will be passed back to the caller.
The payload IDs are used to tie pending requests with result. It appears that the unforeseen
type will propagate into the Dicts tracking pending requests and results without triggering
an exception. When it comes to Message.function, it can get decoded to a type different
than str, but due to the usage of str.startswith("_") right after the decoding, it does
not appear that a non-str type can propagate beyond the decoding.

Recommendation Enforce type checking on payload ID and message function fields in order to avoid any un-
foreseen behavior in this and future releases.

24 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

https://github.com/chia-network/chia-blockchain/blob/76729e64/src/server/ws_connection.py#L309
https://github.com/chia-network/chia-blockchain/blob/76729e64/src/server/ws_connection.py#L309

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

25 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

26 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

Appendix B: Project Contacts
The team from NCC Group has the following primary members:

• Javed Samuel — NCC Group
javed.samuel@nccgroup.com

• Aleksandar Kircanski — NCC Group
aleksandar.kircanski@nccgroup.com

• Ava Howell — NCC Group
ava.howell@nccgroup.com

• Ephrayim Kishko — NCC Group
ephrayim.kishko@nccgroup.com

The team from Chia Network Inc has the following primary members:

• Gene Hoffman — Chia Network Inc.
hoffmang@chia.net

• Bram Cohen — Chia Network Inc.
bram@chia.net

27 | Chia Network Inc Chia Consensus and Proof of Space Security
Assessment

Chia Network Inc / NCC Group Confidential

mailto:javed.samuel@nccgroup.com
mailto:aleksandar.kircanski@nccgroup.com
mailto:ava.howell@nccgroup.com
mailto:ephrayim.kishko@nccgroup.com
mailto:hoffmang@chia.net
mailto:bram@chia.net

	Executive Summary
	Synopsis
	Scope
	Testing Methodology
	Key findings
	Notes and Observations

	Proofs of Space Implementation Notes
	Table of Findings
	Finding Details
	Finding Field Definitions
	Project Contacts

