
Chia Proof of Space Construction

Version: 1.1

Updated: July 31, 2020

Introduction

In order to create a secure blockchain consensus algorithm using disk space a Proof of

Space is scheme is necessary. This document describes a practical construction of Proofs

of Space based on Beyond Hellman’s Time-Memory Trade-Offs with Applications to Proofs of

Space [1]. We use the techniques laid out in that paper, extend it from 2 to 7 tables, and

tweak it to make it efficient and secure for use in the Chia Blockchain. The document is

divided into three main sections: What (mathematical definition of a proof of space), How

(how to implement proof of space), and Why (motivation and explanation of the

construction) sections. The Beyond Hellman paper can be read first for more mathematical

background.

Chia Proof of Space Construction

Introduction

What is Proof of Space?

Definitions

Proof format

Proof Quality String

Definition of parameters, and functions:

Parameters:

 functions:

Matching function :

 function:

 function:

Collation function :

How do we implement Proof of Space?

Plotting

Plotting Tables (Concepts)

Tables

Table Positions

Compressing Entry Data

Delta Format

ANS Encoding of Delta Formatted Points

Stub and Small Deltas

Parks

Checkpoint Tables

Plotting Algorithm

Final Disk Format

Full algorithm

Phase 1: Forward Propagation

Phase 2: Backpropagation

Phase 3: Compression

Phase 4: Checkpoints

M, f ,A, C

f

M
A′

A
C

https://eprint.iacr.org/2017/893.pdf
https://eprint.iacr.org/2017/893.pdf

Sort on Disk

Plotting Performance

Space Required

Proving

Proof ordering vs Plot ordering

Proof Retrieval

Quality String Retrieval

Proving Performance

Verification

Construction Explanation (Why)

Blockchain consensus summary

AACKPR17

7 Tables

Collation of Inputs

Inlining Islands

Matching Function Requirements

Minimum and maximum plot sizes

Expected number of proofs

Using ChaCha8 and BLAKE3

Quality String

Plot seed

Plotting algorithm cache locality

Potential Optimizations

Variable Sized Parks

Cycles attack

Hellman Attacks

Dropping bits in x values / line points

Reduce Plotting Space overhead

Mixing passes

Every pos_R value is used at least once

Pruning bad x values

Replotting Attack

Reduce Checkpoint table size

Faster Disk

Multithreading

References

What is Proof of Space?

Definitions

 denotes the set

 is an 8-round ChaCha encryption of a data block with

zeros at block offset with key . The low and high bits of are placed into state

words 12 and 13, respectively, as in the reference implementation [5].

 is a BLAKE3 hash of

 is the natural logarithm

 are bitwise left-shift and right-shift operators

 is the modulus operator

[X] {0, 1, ...,X − 1}
ChaCha8(c,K) : [2] →64 [2]512

c K c

BLAKE3(x) : [∗] → [2]256 x

e

≪, ≫
%
divmod(x,m) = (⌊ ⌋, x%m)m

x

 denotes bitwise-XOR operation

 denotes zero-padded concatenation: for the implied domain , it is

 = the first (most significant) bits of . If is the implied

domain, equal to .

 If has implied domain , then this is the to bits of taken

as a number, where the first (most significant) bit is considered the . Equal to

. For example, on implied domain is

. Also, the default values are and if they are not specified.

Proof format

For a given , a space parameter , and a challenge

chosen by a verifier, a proof of space is bits:

 (with) satisfying:

(All the matching functions return .)

Here,

 is a matching function ;

 is a high level function that composes with ;

 and are high level hash functions that call ChaCha8 or BLAKE3 on their inputs

in some way, using the plot seed as a key

 is a collation function for

Plot seed is an initial seed that determines the plot and proofs of space

Proof Quality String

The quality string (which can be used for blockchain consensus) for a valid proof

 is defined as where , and the values are sorted

in plot order. Plot ordering is a permutation of values into values such that:

 and are switched if and only if , compared element-wise, from first to last.

Definition of parameters, and functions:

Parameters:

⊕
x ∥ y y ∈ [2]z (x≪
z) + y

(x)
b

trunc b x x ∈ [2]z

x≫ (z − b)
x[a : b] x [2]z ath (b− 1)th x

0th

(x≫ (z − b)) % (1 ≪ (b− a)) (0b100100)[2 : 5] [2]6

0b010 = 2 a = 0 b = z

plot_seed ∈ [2]256 30 ≤ k ≤ 50 Chall ∈ [2]256

π 64k

π =Chall; plot_seed, k x , x , ..., x1 2 64 x ∈i [2]k

M(f (x), f (x)),M(f (x), f (x)),…1 1 1 2 1 3 1 4

M(f (x , x), f (x , x)),M(f (x , x), f (x , x)),…2 1 2 2 3 4 2 5 6 2 7 8

M(f (x , x , x , x), f (x , x , x , x)),…3 1 2 3 4 3 5 6 7 8

M(f (x ,… , x), f (x ,… , x)),…4 1 8 4 9 16

M(f (x ,… , x), f (x ,… , x)),…5 1 16 5 17 31

M(f (x ,… , x), f (x ,… , x))6 1 32 6 33 64

(Chall) = (f (x , x ,… , x))
k

trunc
k

trunc 7 1 2 64

 [32 matches: (x ,x), (x ,x), (x ,x),⋯]1 2 3 4 5 6

 [16 matches: (x ,… ,x), (x ,… ,x),⋯]1 4 5 8

 [8 matches: (x ,… ,x), (x ,… ,x),⋯]1 8 9 16

 [4 matches: (x ,… ,x), (x ,… ,x),⋯]1 16 17 32

 [2 matches: (x ,… ,x), (x ,… ,x)]1 32 33 64

 [1 match]

M True

M(x, y) M : [2] ×k+param_EXT [2] →k+param_EXT {True, False}
f A C

A′ A

C C :t →
(2 times)t−2

[2] ×⋯× [2]k k [2]bk b = colla_size(t)

πChall; plot_seed, k x ∥2a+1 x2a+2 a = Chall%32 x

π x π′ x′

for s in [1, 2, 3, 4, 5] for i in [0,… , 2 −6−s 1], in order

L = [x ,… , x],R =i∗2 +1s i∗2 +2s s−1 [x ,… , x]i∗2 +2 +1s s−1 (i+1)∗2s

L R L < R

M, f ,A, C

We have the following parameters, precalculated values, and functions:

 functions:

For convenience of notation, we have functions with:

Matching function :

Then the matching function is:

 function:

param_EXT

fsize

param_M

param_B

param_C

param_BC

param_c1 = param_c2

bucket_id(x)

b_id(x), c_id(x)

colla_size(t)

= 6

= k + param_EXT

= 1 ≪ param_EXT = 64

= 119

= 127

= param_B ∗ param_C

= 10000

= ⌊ ⌋
param_BC

x

= divmod(x%param_BC, param_C)

=

⎩⎪⎪
⎪⎪
⎪⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪⎪
⎧1
2
3

4
undefined

if t = 2
if t = 3 or t = 7
if t = 6

if t = 4 or t = 5
else

f

f , f ,⋯ f1 2 7

ft

f (x)1 1

f (x , x)2 1 2

f (x , x , x , x)3 1 2 3 4

f (x ,… , x)4 1 8

f (x ,… , x)5 1 16

f (x ,… , x)6 1 32

f (x ,… , x)7 1 64

: → [2]
(2 times)t−1

[2] ×⋯× [2]k k fsize

= A (x)′
1

= (A(C (x), C (x), f (x)))
fsize
trunc 2 1 2 2 1 1

= (A(C (x , x), C (x , x), f (x , x)))
fsize
trunc 3 1 2 3 3 4 2 1 2

= (A(C (x ,… , x), C (x ,… , x), f (x ,… , x)))
fsize
trunc 4 1 4 4 5 8 3 1 4

= (A(C (x ,… , x), C (x ,… , x), f (x ,… , x)))
fsize
trunc 5 1 8 5 9 16 4 1 8

= (A(C (x ,… , x), C (x ,… , x), f (x ,… , x)))
fsize
trunc 6 1 16 6 17 32 5 1 16

= (A(C (x ,… , x), C (x ,… , x), f (x ,… , x)))
fsize
trunc 7 1 32 7 33 64 6 1 32

M

M

M(l, r)

M(l, r)

: [2] × [2] → {True, False}fsize fsize

=

⎩⎪⎪
⎪⎪
⎪⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪⎪
⎧True

False

if bucket_id(l) + 1 = bucket_id(r)
and ∃m : 0 ≤ m < param_M with:
b_id(r) − b_id(l) ≡ m (mod param_B) and

c_id(r) − c_id(l) ≡ (2m+ (bucket_id(l)%2)) (mod param_C)2

else

A′

A (x) = (ChaCha8(0, plot_seed) ∥ ChaCha8(1, plot_seed) ∥ ...)[kx : kx + k] ∥ x[: param_M]′

for .

 function:

Collation function :

How do we implement Proof of Space?

Proof of space is composed of three algorithms: plotting, proving and verification.

Plotting

Plotting Tables (Concepts)

Plotting is our term for the method of writing data to disk such that we can quickly

retrieve 1 or more proofs (if they exist) for a given challenge. The plot refers to the

contents of the file on disk. While proof retrieval must be fast, the plotting process can

take time, as it is only done once, by the prover. In the Chia Blockchain, these provers

are referred to as farmers, since they create and maintain the plots. That is, a farmer

creates and efficiently stores data on disk, for a given plot seed, that allows them to

find proofs that meet the above requirements. We first discuss general concepts related

to the problem of plotting.

Tables

There are 7 tables, each with entries, where is the space parameter. Each table

has information for finding 's that fulfill the matching condition of that table and all

previous tables.

For convenience, we will denote the new matching condition introduced at each table:

 for the first table,

 for the second table, and so on.

We will also refer to the total matching conditions of a table and all previous tables:

Tables conceptually are broken down into a sequence of entries that represent tuples

that satisfy these total matching conditions. For example, each entry of the third table

⇒ A (x) =′ {
ChaCha8(q, plot_seed)[r : r + k] ∥ x[: param_M]
ChaCha8(q, plot_seed)[r :] ∥ ChaCha8(q + 1)[: r + k − 512] ∥ x[: param_M]

if r + k ≤ 512
else

(q, r) = divmod(x ∗ k, 512)

A

A(l, r, y) = BLAKE3(y ∥ l ∥ r)

C

C (x , ..., x) :=t 1 2t−2

⎩⎪⎪
⎪⎪
⎪⎪
⎪⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎪⎪
⎧x1

x ∥ x1 2

x ∥ x ∥ x ∥ x1 2 3 4

A(C (x ,… , x), C (x ,… , x), f (x ,… , x))[fsize : fsize + 4 ∗ k]4 1 4 4 5 8 3 1 4

A(C (x ,… , x), C (x ,… , x), f (x ,… , x))[fsize : fsize + 3 ∗ k]5 1 8 5 9 16 4 1 8

A(C (x ,… , x), C (x ,… , x), f (x ,… , x))[fsize : fsize + 2 ∗ k]6 1 16 6 17 32 5 1 16

if t = 2
if t = 3

if t = 4
if t = 5
if t = 6

if t = 7

Π

O(2)k k

xi

M (x , x) =1 1 2 M(f (x), f (x))1 1 1 2 M (x , x , x , x) =2 1 2 3 4

M(f (x , x), f (x , x))2 1 2 2 3 4

(x ,… , x) =Mt 1 2t (x ,… , x) ∧Mt−1 1 2t−1 (x ,… , x) ∧Mt−1 2 +1t−1 2t M (x ,… , x)t 1 2t

xi

has information on recovering tuples such that is , ie.

 are all .

We also refer to the left and right halves of tuples: if we have an entry representing

tuple , then the halves are and

.

These entries can also be ordered, so that (relative to some ordering):

where is the number of entries in the table.

The final table, , is special, in that it does not contain information for a matching

condition, but instead stores bits, which we will refer to as the final outputs of the

plot. The farmer must be able to look up final outputs efficiently, using the challenge,

and the data format used to achieve this is described in Checkpoints.

Table Positions

For each entry, instead of writing the data, we refer to the position of that entry in

the previous table.

For example, in the third table, each entry conceptually is

, but we can store it instead as

 for some .

This makes it clear that (given we have stored all previous tables), storing

is sufficient to recover .

Compressing Entry Data

We have points (positions to the previous table) that we want to compress.

Actually, because we can recover the order of these indices (by checking later),

we only need to store the set of them: ie., store as data from a

discrete uniform distribution (as we will see) in the "triangle space"

. Since is always greater, you can imagine these entries as

random points in a two dimensional by triangle.

We can exhibit a bijection from this space to a line :

(Note: this data is not actually in a discrete uniform distribution (eg. no line points

are repeated), though we will see that this has a negligible effect.)

We can compress these points in , referred to as , by converting them to

delta format, then encoding them with ANS.

Delta Format

(x ,… , x)1 8 (x ,… , x)M3 1 8 True
M (x ,… , x),M (x ,… , x),M (x ,… , x),M (x , x),⋯ ,M (x , x)3 1 8 2 1 4 2 5 8 1 1 2 1 7 8 True

xi

(x ,… , x)1 2t left_half = (x ,… , x)1 2t−1 right_half =
(x ,… , x)2 +1t−1 2t

σ

Table =t;σ E ,E ,⋯ ,E{t,0} {t,1} {t,N −1}t

Nt tth

T7
f7

xi

E ={3,i} (left_half :
(x , x , x , x), right_half :1 2 3 4 (x , x , x , x))5 6 7 8 E ={3,i} (left_half :
E , right_half :{2,j }1 E){2,j }2 j , j1 2

j , j ∈1 2 Nt−1

E{t,i}

(j , j) ∈1 2 Nt

M(…)
(max(j , j), min(j , j))1 2 1 2

Triangle =t
{(x, y)∣x, y ∈ [N], x >t y} x

Nt Nt

Line =t []2
(N −1)(N −2)t t

(x, y) ∈ Triangle ⇒t

p ∈ Line ⇒t

+ y ∈ Line
2

x(x − 1)
t

(x, p −) ∈ Triangle , where x = ⌊ ⌋
2

x(x − 1)
t 2

+ 18p + 1

Linet line_points

Suppose we have a set of points from a discrete uniform distribution:

chosen independently from . (In our specific case, we have points from).

Here, is a "space to entries ratio" parameter.

We can sort these points and store only the deltas: for (and

). It is clear that from these deltas, we can recover the set of points. We say that

the points are in delta format if we are storing these deltas instead of points.

ANS Encoding of Delta Formatted Points

We can encode these deltas (from points in a discrete uniform distribution) using an

Asymmetric Numeral System (ANS [4]) encoding, an encoding scheme that is essentially

lossless and offers extremely fast compression and decompression speeds for fixed

distributions. A requirement to do so is that we know the distribution of . From

mathematics pertaining to order statistics, it can be proved that the pdf (probability

density function) of is independent of , and equal to:

Stub and Small Deltas

In the previous discussion, the 's are approximately for line points of

size , makes certain compression and decompression operations infeasible. To mitigate

this, we convert 's to "stub and small delta" form:

After, we can write the stubs directly, and an encoding of the 's. The distributions of

 and are approximated (to a negligible error)

by the discrete uniform distribution on these domains, which is important for our use of

ANS.

We can also calculate the appropriate space to entries ratio parameter for the current

table:

Parks

For each table , we often have the need to efficiently find the -th entry in that table:

an element of .

Our strategy is to group these entries into parks: entries per park

(EPP), so that:

Each park encodes information about its entries () as follows:

The value of the first entry ;

The 's:

The 's, written directly [bits per stub];

The 's, ANS encoded;

K x , x ,… , x1 2 K

[RK] Nt Linet
R

δ =i x −i−1 xi i = 1,… ,K
x =0 0

Δi

δ i

P (Δ =i X;R) = {
1 − ()

e
e−1

R
1

(e − 1)(e− 1) (e)R
1

R
1

R

−(X+1)

if X = 0

else

Δi Δ ≈i N ≈t 2k

22k

Δi

(δ , stub) =i i divmod(Δ , 1 ≪i (k − 2))

δi
stub ∈i [2]k−2 δ ∈i [(N −t 1)(N −t 2) ≫ (k − 1)]

R =t ≈
N ∗ 2t

k−1

(N − 1)(N − 2)t t 2()
2k
Nt

t i

Linet

param_EPP = 2048

Park encodes E ,E ,… ,Ei {t,i∗param_EPP} {t,i∗param_EPP+1} {t,i∗param_EPP+param_EPP−1}

e , e ,…0 1

e ∈0 Linet
(param_EPP − 1) Δ

(param_EPP − 1) stub k − 2
(param_EPP − 1) δ

Then, to find the entry in the park, we can find the entry in , where

.

One wrinkle with this system is that it is highly desired that each park starts at a fixed

location on disk. One simple way to achieve this is to allocate more than enough space to

store the ANS encoding of the 's. Because the variance of is very low as a

percentage of the total disk space of the park (where represents Shannon entropy), this

is a reasonable strategy, as the wasted space is very small.

We can bound the probability that the parks have sufficient space to store these entries,

by calculating the mean and standard deviation of the information content in an entire

park:

For eg. and , we have . Because

, we can choose a park size of

to have an approximately 99.9% chance to store a single table of entries.

More complicated systems of writing parks to disk are possible that offer minor

compression improvements, based on recovering the endpoints of parks that have been

coalesced. For a more thorough discussion, see Variable Sized Parks.

Checkpoint Tables

Retrieving a proof of space for a challenge, as explained in Proving, requires efficiently

looking up a final output in the final table. Therefore, in entries are sorted

by . In order to compress the on disk representation, we can store deltas between each

, which are small, since there are approximately uniformly distributed integers of

size .

We can efficiently encode these deltas with a variable scheme like Huffman encoding. For

simplicity, we allocate a fixed amount of space for encoding deltas for

entries, and allow 3 bits per delta to prevent overflows, storing them in parks.

However, every entries, the will drift away from the position in the table,

for example entry 10,000 might be stored in position 10,245, so we store a checkpoint

every entries, in a new table, . Furthermore, since these checkpoints do not

fit in memory for a large , we can store an additional checkpoint every

entries, in yet a new table, . Since there will be approximately entries, we can

store these in memory.

Plotting Algorithm

Final Disk Format

ith rth Parkq (q, r) =
divmod(i, param_EPP)

δ H(δ)
H

μ

σ

μ̂

σ̂

= −P (X) log P (X)
X∈P (X ;R)

∑ 2

= P (X)((− log P (X)) − μ)
X∈P (X ;R)

∑ 2
2

= μ ∗ (param_EPP− 1)

= σ ∗ param_EPP− 1

R = 1.0 param_EPP = 2048 =μ̂ 3885.33, =σ̂ 52.21
InverseCDF[NormalDistribution[0, 1], (99.9%)] <2−40 8.0 +μ̂ 8σ̂

240

f7 Table7
f7

f7 2k

k

param_c =1 10000

param_c1 f7

param_c1 C1
k param_c2 C1

C2 c ∗c1 2

2k C2

Let and denote the positions in of a entry. That is, a

 entry is composed of two indices into .

 is a final output of function , which is compared to the challenge at verification.

The values (number of entries in a table) are calculated in the Space Required section.

The final format is composed of a table that stores the original values, 5 tables that

store positions to the previous table, a table for the final outputs, and 3 small

checkpoint tables.

The final disk format is the following:

Table Data Disk Storage Approximate N

Mapped to line point, deltafied, encoded,

and parked

Mapped to line point, deltafied, encoded,

and parked

Mapped to line point, deltafied, encoded,

and parked

Mapped to line point, deltafied, encoded,

and parked

Mapped to line point, deltafied, encoded,

and parked

Mapped to line point, deltafied, encoded,

and parked

Parked

Byte aligned storage

Byte aligned storage

Deltafied, encoded, and parked

Full algorithm

The plotting algorithm takes as input a unique , a space

parameter , a param object , and deterministically outputs a final file

.

, or sort on disk, takes in a table on disk, and performs a full ascending sort,

starting at a specified bit position.

1 Forward propagation phase
For x in 0...2^k - 1:
 Compute f1(x)
 Write (f1(x), x) to table1

For table in 1..6:
 Sort tablei by (fi(x), pos, offset). for table1, by f1(x)
 For entry in tablei:
 if entries L and R match:

post;L post;R Tablet Tablet+1
Tablet+1 Tablet

f7 f7
N

x

Table1 E ={1,i} x , xL R 0.798 ∗ 2k

Table2
E ={2,i}

pos , pos1;L 1;R
0.801 ∗ 2k

Table3
E ={3,i}

pos , pos2;L 2;R
0.807 ∗ 2k

Table4
E ={4,i}

pos , pos3;L 3;R
0.823 ∗ 2k

Table5
E ={5,i}

pos , pos4;L 4;R
0.865 ∗ 2k

Table6
E ={6,i}

pos , pos5;L 5;R
2k

Table7 E ={7,i} pos6;L 2k

C1 f7 param_c1
2k

C2 f7 param_c ∗param_c1 2

2k

C3 f7 param_c1
2k

PlotAlgo1 plot_seed ∈ [2]256

30 ≤ k ≤ 50 param

F

Sort

 Compute fi+1(CL, CR) for table1, M=x
 C = Collation_i(CL, CR)
 Store (fi+1, pos, offset, C) in tablei+1

2 Backpropagation phase
For table in 6..1:
 Iterate through tablei and tablei+1:
 Drop unused entries in tablei
 sort_key = table == 7 ? fi : tablei+1pos
 Rewrite used entries in tablei as (sort_key, pos, offset)
 Rewrite entries in tablei+1 as (sort_key, pos, offset)
 If i > 1:
 Sort tablei by (pos, offset)

3 Compression phase
For table in 1..6:
 Iterate through tablei and tablei+1:
 Read sort_key, pos, offset from tablei+1
 Read tablei entries in that pos and offset: eL, eR
 y, x = sort(eL.newPos, eR.newPos)
 line_point = x*(x-1)//2 + y
 Rewrite tablei+1 entry as (line_point, sort_key)
 Sort tablei+1 by line_point
 For entry e, i in enumerate(tablei+1):
 newPos = i
 Rewrite e as (sort_key, newPos)
 Write compressed e.line_point deltas to table Pi
 Sort tablei+1 by sort_key

4 Checkpoints phase
For entries in table7:
 Compress f7 entries into C1,C2,C3 tables
 Write pos6 entries to table P7k

Phase 1: Forward Propagation

The purpose of the forward propagation phase is to compute all tables where the matching

conditions are met, and to compute all final outputs . For each , we compute the

corresponding function on the values (actually on the collated values), and write the

outputs to disk to , along with the corresponding positions in , and the

collated values.

Then, is performed on the new table, to sort it by output . This allows us to check

for the matching condition efficiently, since matching entries will have adjacent

s. Matches can be found by using a sliding window which reads entries from disk,

one group at a time. to refers to the output of the collation function for each n.

File will store the following data after phase 1:

Table Data Disk storage

Sorted by f_1

Sorted by

Sorted by

Sorted by

f7 Tablei

f x

Tablei+1 Tablei

x

Sort fi

bucket_id
C3 C7

T

Table1 f , x1

Table2 f , pos , offset,C2 1;L 3 (f , pos , offset)2 1;L

Table3 f , pos , offset,C3 2;L 4 (f , pos , offset)3 2;L

Table4 f , pos , offset,C4 3;L 5 (f , pos , offset)4 3;L

Table Data Disk storage

Sorted by

Sorted by

Sorted by

Pointers in Phase 1 and 2 are stored in pos, offset format. Pos offset format represents a

match, by storing a bit position, and a much smaller 9 or 10 bit offset.

During phase 1, entries are close to their matches, so storing the offset is efficient.

This will change into double pointer format, which stores two bit pointers, but uses

sorting and compression to reduce each entry to a size much closer to .

Phase 2: Backpropagation

Note that after phase 1, the temporary file is sufficient to create proofs of space.

can be looked up, and the tables can be followed backwards until the values in

are reached. However, this is not space efficient.

The purpose of the backpropagation step is to remove data which is not useful for finding

proofs. During this phase, all entries which do not form part of the matching condition in

the next table, are dropped. Positions in the next table are adjusted to account for the

dropped entries. The Collation outputs (values) are also dropped, since they are only

useful for forward propagation. For a more efficient compression phase each entry is given

a , which corresponds to its position in the table. This is more efficient than

storing to represent its position.

Implementation of this phase requires iterating through two tables at once, a left and a

right table, checking which left entries are used in the right table, and dropping the

ones that are not. Finally, a sort by position is required before looking at the right

table, so it's possible to read a window into both tables at once in a cache-local manner

without reading random locations on disk.

File will store the following data after phase 2:

Table Data Disk storage

Sorted by f_1

Sorted by

Sorted by

Sorted by

Sorted by

Sorted by

Sorted by

Phase 3: Compression

The purpose of phase 3 is to convert from the (pos, offset) format, which requires tables

to be sorted according to their for retrieval, to a double pointer format,

Table5 f , pos , offset,C5 4;L 6 (f , pos , offset)5 4;L

Table6 f , pos , offset,C6 6;L 7 (f , pos , offset)6 5;L

Table7 f , pos , offset7 6;L (pos , offset)6;L

k + 1

k

k

f7

x Table1

C

sort_key
(f , pos , offset)t t−1

T

Table1 f , x1

Table2 sort_key, pos , offset1;L (pos , offset)1;L

Table3 sort_key, pos , offset2;L (pos , offset)2;L

Table4 sort_key, pos , offset3;L (pos , offset)3;L

Table5 sort_key, pos , offset4;L (pos , offset)4;L

Table6 sort_key, pos , offset5;L (pos , offset)5;L

Table7 f , pos , offset7 6;L (pos , offset)6;L

bucket_ids

which allows storing entries in a more compressed way, and sorts by . In the pos

offset format around k bits are required for the pos and 8 bits for the offset, for a

total of around bits per entry, whereas in double pointer format, we can average

around 2 bits per entry overhead.

With the compressed format, two pointers can be stored in around bits, using the

strategies described in Compressing Entry Data.

The goal for the double pointer format is to store two bit pointers to a previous table

(bits of information), as compactly as possible. This is achieved by having each entry

 be represented as pointers to the previous table, where the previous table is sorted

by . This makes positions random (i.e. it’s no longer sorted by matches/

). Then we take these bit , and encode the deltas between each one, each

which will be around bits. This phase requires some careful sorting and mapping from old

positions to new positions, since we don't have as much memory as disk space.

line_point

k + 8

k + 2

k

2k
Et,i

line_point bucket_id
2k line_points

k

As we iterate from to , the compression is performed, and each compressed

table is written to the final file .

File will store the following data after phase 3:

Table Data Disk storage

Sorted by f_1

Sorted by

Sorted by

Sorted by

Sorted by

Sorted by

Sorted by

File will store the final format after phase 3, except for and the checkpoint

tables.

The main bottlenecks in the reference implementation are searching for matches, and

sorting on disk.

Phase 4: Checkpoints

Phase 4 involved iterating through , writing , and compressing the s

into the checkpoint tables.

Sort on Disk

Sort on disk is an external sorting algorithm that sorts large amounts of data with

significantly less memory than the data size. On large plots, this function quickly

becomes the bottleneck of the plotting algorithm. It works by recursively dividing data

into smaller partitions, until there is enough memory to fit a partition in memory. Data

is grouped into partitions by the first unique bits of the numbers to be sorted, which

means data is divided into 16 buckets. While impractical, the simplified idea is presented

below.

SortOnDisk(data, bits_begin):
 If enough memory to sort data:
 SortInMemory(data, bits_begin)
 Else:
 For entry in data:
 Move entry to partition entry[bits_begin:bits_begin+4]
 For partition in 0..15:
 SortOnDisk(partition[i], bits_begin+4)

While partitioning data, everything must fit into memory, so we continuously extract from

all 16 buckets into memory, and write back from memory into the target buckets.

Let the number of entries from partition (bucket) ,

the number of entries written back to partition , that belong there and

 the number of entries read from bucket from Disk. We also define

Table1 Table7
F

T

Table1 f , x1

Table2 sort_key, new_pos sort_key

Table3 sort_key, new_pos sort_key

Table4 sort_key, new_pos sort_key

Table5 sort_key, new_pos sort_key

Table6 sort_key, new_pos sort_key

Table7 f , new_pos7 f7

F Table7

T .Table7 F .Table7 f7

4

bucket_sizes[i] i written_per_bucket[i]
i

consumed_per_bucket[i] i

 as the disk position of the first entry and as the total size of an

entry. We assume is an efficient way to store and retrieve entries in memory,

grouping entries by their first 4 unique bits (their bucket).

The algorithm works by constantly filling memory by reading a few entries from each

bucket, then extracting from memory and writing into the correct disk location. At any

step, the number of entries written back to bucket must be smaller or equal to the number

of entries read from bucket (this way no entry is overwritten). We also write the

heaviest buckets first, in order to quickly clear the memory. When refilling the memory,

we read from buckets in increasing order of

, as the smaller the difference is, the less we can extract from memory from bucket on

the next step (and this optimizes the worst case). Finally, we know the beginning of each

bucket in the sorted ordering on Disk: for bucket , it's

, so this will help to know the exact position in which to

write entries from bucket on Disk. After all the entries have been moved into their

correct bucket, we call SortOnDisk on each bucket, until we can sort in memory.

Bstore is implemented as concatenated linked lists, each bucket having its own linked

list. Moreover, the empty positions inside the memory form their own linked lists as well.

Sorting in memory is done in two ways: quicksort (when the data is not random) or our

custom SortInMemory algorithm (when the data is random).

The custom SortInMemory algorithm is similar to the SortOnDisk, as each entry is put into

a bucket. The main difference is we are using twice as many buckets as the number of

entries, guaranteeing that the buckets will have a sparse number of entries, and

SortOnDisk(disk_begin, bits_begin, entry_len):
 Sort in memory if possible, otherwise do this:
 total = 0
 For i in 0..15:
 bucket_begins[i] = total
 total = total + bucket_sizes[i]
 disk_position[i] = disk_begin + bucket_begins[i] * entry_len
 Read some entries starting with disk_position[i]
 Foreach(read_entry):
 Move the entry into a spare (temporary) zone of the file
 consumed_per_bucket[i] += 1
 While (spare zone has entries and bstore is not full):
 Read one entry from the spare zone
 Store the entry into bstore
 While (bstore is not empty):
 bucket_order = range(0, 15)
 Sort bucket_order decreasingly by bucket sizes in bstore
 For b in bucket_order:
 to_extract = min(bstore.bucket_size(b),
 consumed_per_bucket[b] - written_per_bucket[b])
 Extract to_extract entries from bucket b of bstore
 Write them on disk starting from (disk_begin+(bucket_begins[b]+written_per_bu
 written_per_bucket[b] += to_extract
 Sort bucket_order increasingly by consumed_per_bucket[i] - written_per_bucket[i]
 While (bstore is not full):
 Populate bstore from buckets, using the bucket_order ordering
 If all buckets are fully consumed but bstore is not full, populate from the s
 For i in 0..15:
 SortOnDisk(disk_position[i], bits_begin+4, entry_len)

disk_begin entry_len
bstore

i

i

consumed_per_bucket[i] −written_per_bucket[i]
i

i disk_begin+
bucket_sizes[j] ∗∑j=0

i−1
entry_len

i

collisions will slow down the algorithm. Since we know that the data is evenly

distributed, we know approximately where each entry should go, and therefore can sort in

 time.

Let be the smallest number such as . The bucket of an entry is

given by the bits from to . We use the memory to store the entries

into buckets: we initially try to place the entry on its bucket position. If the position

is free, we simply place the entry there. Otherwise, we place the minimum between the

current entry and the existing entry and try to place the other entry one position higher.

We keep doing this until we find an empty position.

SortInMemory():
 Let k be the smallest number such as 2^b >= 2 * num_entries.
 Read entries in batches.
 Foreach(entry):
 Let bucket = entry[bits_begin:bits_begin+k]
 While (bucket is not free in memory):
 Let other_entry be the entry in memory from the position bucket.
 Store in memory min(entry, other_entry) on position bucket.
 entry = max(entry, other_entry).
 bucket += 1
 Store entry in position bucket in memory.
 Iterate over memory and find occupied positions.
 Retrieve entries from them and write them in batches.

Plotting Performance

The algorithm is designed with cache locality in mind, so that random disk lookups are not

required, and a large amount of memory is not necessary. The sort on disk algorithm will

perform better if more memory is allocated.

However, multiple passes on disk are required, both in the sorts, and in the other parts

of the algorithm. Still, comparisons, arithmetic, and memory allocation are required

during plotting, which can cause the algorithm to be CPU bound. Multi-threading can be

used to split up the work, as well as to separate CPU from disk I/O.

In addition, the usage of an SSD or RAM drive can significantly speed up the plotting

process.

Space Required

During backpropagation, each left table has entries, and entries with no matches are

dropped. For and , there are entries in each table. Under the random edge

assumption, where each combination of entries has a probability of existing, the

probability of an entry in having matches is equivalent to the probability of each

match not hitting the entry, which is

Therefore, the proportion of entries not dropped from is . For the other

tables , the proportion of entries not dropped is:

O(n)

b 2 >b = 2 ∗ num_entries
bits_begin bits_begin+ b

2k

Table6 Table7 2k

2−2k

Table5

p =5 1 − ()
2k

(2 − 2)k
2k

Table5 p :5 ≈ 0.865
Tablet

p =t 1 − ()
2k

(2 − 2)k
p 2t+1

k

Assuming we encode each line point delta in exactly k bits, that the checkpoint tables use

negligible space, and that Hellman attacks are not performed, the total size of the file

will be:

The total size of the temporary file will be:

For the proposed constants, the temporary file is around 6 times the size of the final

file.

Proving

The proving process is the process by which a farmer, someone who stores a plot,

efficiently retrieves proofs from disk, given a challenge.

Suppose a farmer Alice wants to prove to a verifier Bob that she is using 1TB of data. Bob

generates a random challenge, gives it to Alice, and if Alice can immediately create a

valid proof of space for that challenge and the correct based on the space formula using

the proving algorithm, then Bob can be convinced that Alice stored that data. (Actually,

Alice will only have 1 proof in expectation, so more challenges should be issued by Bob).

In the blockchain use case, there is no interactivity, but the concept of fast proving for

a random challenge still applies.

Proof ordering vs Plot ordering

In the compression step, when two pointers to a previous table, and are compressed to

a line point, they are switched if necessary, so that > . This means that the original

ordering of the values of is lost, but we instead have a new, deterministic

ordering being used on disk. The reason for this is explained in Quality String.

Therefore, at the end of the proof retrieval process, the proof must be converted by

evaluating matches at each level, and reordering where necessary.

Proof Retrieval

The proof retrieval algorithm takes in a plot file , a challenge , and returns a

list of proofs , in time independent of the space parameter .

1. Initialization step: load , into memory.

2. .

3. Find the index of the final entry where

F

Space

Space

Space

Space

= k ∗ 2 ∗ (1 + p) bitsk

t=1

∑
6

t

= k ∗ 2 ∗ (1 + 1 + 0.865 + 0.822 + 0.807 + 0.801 + 0.798) bitsk

= k ∗ 6.09 ∗ 2 bitsk

= 0.762 ∗ k ∗ 2 bytesk

T

2 ∗k ((k + param_EXT + k)
+ 5 ∗ (k + param_EXT + (k + 1) + param_offset_size)

+ (2 + 4 + 4 + 3 + 2) ∗ k

+ 2k + k

= 2 ∗k (30k + 6 ∗ param_EXT + 5 ∗ param_offset_size+ 5)

k

x y

x y

x Table1

F Chall

n π …π1 n k

k tablec2
target← (chall)

k
trunc

c2 target < c2

4. Seek to , based on the index from the previous step, and read

entries.

5. Find the index of the final entry where

6. Read a park from based on the index from the previous step

7. Find all indices where

8. If there are no such indices, return []

9. For each proof, recursively follow all table pointers from to and return

64 values.

10. For each proof, reorder the proof from plot ordering to proof ordering

Quality String Retrieval

The proof retrieval algorithm takes in a plot file , a challenge , and returns a

list of bit quality strings.

1. Perform the proof retrieval algorithm up to step 8

2. Calculate

3. Follow table pointers from to . For each bit of , if the bit is

0, follow the smaller position, and if the bit is 1, follow the larger position of

the pair.

4. Retrieve two values from the entry, and , where .

5. Return . Note that is is equivalent to the Proof Quality String.

Proving Performance

The prover needs to be able to create proofs immediately for blockchain consensus

applications. For challenges that don't have any proofs of space, steps 2-7 in Proof

Retrieval require only two disk lookups.

When proofs exist, only 6 additional disk lookups are required to find the quality, per

proof. If the whole proof needs to be fetched, it will cost around 64 disk lookups. Using

the quality allows us to avoid fetching the full proof, until a good quality is found.

Verification

Given a challenge , a proof , and a space parameter , a verifier can efficiently

verify a proof by checking that all of the matching functions in Proof Format, and that

the truncated equals the final output. On a successful proof, the verifier can also

compute the quality string by converting the proof from proof ordering to plot ordering

Proof Quality String.

Construction Explanation (Why)

Blockchain consensus summary

The motivation for Chia's proof of space construction is for use as an alternative

resource to Proof of Work in a Namakoto-consensus style blockchain. Space miners (referred

to as farmers) allocate space on their hard drives, respond to challenges, and

occasionally win rewards. Challenges are random 256 values that result from each block. In

Chia's blockchain, this challenge is the unpredictable output of a Verifiable Delay

Function that is required for each block.

tablec1 param_c2

c1 target < c1
c3

f =7 target

table7 table1
x

F Chall

2k

qual_id← Chall%32
Table6 Table1 qual_id

x Table1 x1 x2 x <1 x2
x ∥1 x2

Chall π k

Chall

In order for such a protocol to be secure against 51% attacks and other consensus attacks,

it is clear that an attacker should not be able to create a proof of space for space,

using space. The attackers advantage over an honest farmer that implements only

the main optimizations should be small. This should be true even if the attacker has a

significant amount of processing power and parallelism, as well as fast hard drives.

Furthermore, the initialization phase (plotting), should be as efficient as possible, but

farmers should not be able to perform this phase within the average block interval.

Finally, prover efficiency, verifier efficiency, proof size, non-interactivity of the

initialization phase, and simplicity of honest operation, are all concerns that must be

taken into account, and these are some reasons for a lot of the details of the

construction, explained in depth below. We will build up from the simple ideas, up to the

full definition of proof of space from section 1.

AACKPR17

This construction by Abusalah, Alwen, Cohen, Khilko, Pietrzak and Reyzin[1] aims to create

a simple and efficient proof of space scheme, compared to existing pebbling based PoSpace

schemes.

One of the simplest ways to think about constructing a proof of space is for the verifier

to specify a random function , where , which the prover must quickly be

able to invert. The idea is that the prover can precompute this function table, sort it by

output values, and be able to quickly invert any challenge given by the verifier. For

example, we can set , where is a random nonce chosen at initialization

time, and is a cryptographic hash function.

S

A << S

f : [N] → [N] N = 2k

f(x) = H(n∣∣x) n

H

https://eprint.iacr.org/2017/893.pdf

The problem with the above construction is that the verifier can perform a Hellman Attack

(time space tradeoff), where only checkpoint values are stored, and computation

is performed from the checkpoint to the target value.

The new idea in the paper is to construct a function that can resist such

attacks, by making the function hard to compute in the forward direction for a chosen

input.

The function that has to be inverted is , where ,

but with the requirement that , where can be another hash

function. Given a challenge , the prover must find and . Since we cannot

efficiently compute for any (without storing the table), Hellman attacks can

be mitigated. However, the entire function table can still be computed in quasilinear

time.

In order to implement such a proof of space, we can first compute the table, sort by

output, and find all pairs such that . These can then be stored on

disk and sorted by output.

7 Tables

While function above cannot be computed efficiently in the forward direction, can,

and therefore some time space tradeoffs are possible to invert . In order to mitigate

these attacks, we can increase the number of levels/tables, in the construction, so

that an attacker who optimizes just one level, will not get a massive advantage.

For example, for and matching function , given a challenge , the prover

finds such that:

N 1/2 N 1/2

[N] → [N]

f(x) =1 f (x , x)2 1 2 f (x , x) =2 1 2 H(x ∣∣x)1 2

f (x) =1 1 f (x) +1 2 1 f (x)1

Chall x1 x2
f(x)1 x1 f1

f

f1
(x , x)1 2 f (x) =1 1 f (x)1 2

f2

f f1

f1

m

m = 4 M Chall

x , x , x , x , x , x , x , x1 2 3 4 5 6 7 8

M(f (x), f (x)) ∧1 1 1 2 M(f (x), f (x)) ∧1 3 1 4 M(f (x), f (x)) ∧1 5 1 6 M(f (x), f (x))1 7 1 8

Therefore has domain and two outputs match if the matching function returns

true.

Even in the cases where the attacker can invert with no space, the advantage gained is

at most (since table 1 is smaller due to orphaned values).

The drawback of increasing the number of tables is that the proof size grows

exponentially with the number of tables, which is inconvenient for propagation through the

network. The verification time grows exponentially, which makes it difficult to sync too

many blocks. The number of disk seeks also grows exponentially, making the proving slower,

and computation of these f functions also becomes slower. The number used here is .

Collation of Inputs

Since increasing the number of functions makes the input sizes grow exponentially, this

has a significant performance effect even at . Specifically, it makes the temporary

storage required to compute these tables much larger than the final size of the plot file.

Furthermore, it makes the plotting process require more CPU and more time.

This can be improved by collating the left and right values, using some other function

than just concatenation, as in collation. By limiting the output of the collation function

to 4 values (and the domain of the functions at 8), an attacker trying to perform a

Hellman attack on table 7, for example, will need to either store extra bits or perform

many disk lookups.

The collation function output size can be reduced to and in the last two tables,

since an attack which stores these values, will end up using more space than it saves.

Why the numbers and ? Let's say we truncated the sizes to instead of for .

This would enable us to evaluate for any input by storing all the inputs with storage

of per entry (which can be further compressed). This is sufficient to initiate a

Hellman attack, which makes inversion of cheap. By increasing this number to , the

storage required to Hellman attack by storing the inputs is , much larger than the

honest protocol's bits for and bits for . and as chosen are

conservative numbers, ensuring that performing time space tradeoffs is much more expensive

than honest storage for later tables.

Inlining Islands

Using a very simple matching function, such as , there

would be a large number of small islands (around for edges and nodes). An

island is a set of entries in a table, such that .

Consider a plot stored in pos, offset format. Let's assume there is an island

 in . This island matches to a set of entries in , let's call

it . To compress this we remove completely from and place

it in in place of one element, of . Then, for all other elements of ,

we simply point to the new pos and offset in the same , instead of pointing to the

previous table.

M(f (x , x), f (x , x)) ∧2 1 2 2 3 4 M(f (x , x), f (x , x))2 5 6 2 7 8

M(f (x , x , x , x), f (x , x , x , x))3 1 2 3 4 3 1 2 3 4

f (x , x , x , x , x , x , x , x) =4 1 2 3 4 5 6 7 8 = (Chall)
k

trunc

fi k ∗ 2i−1 M

f1
1/m

f

m = 7

f

m = 7

A

3k 2k

3k 2k k 3k C6

f6

2k
f6 3k

f6 6k
k Table6 k Table7 2k 3k

M(x , x) =1 2 True ⟺ x +1 1 = x2

0.14N N N

SI M(E ,E) ∧1 2 E ∈1 S ⟹I E ∈2 SI

S =I

{E ,… ,E }t,1 t,i Tablet Tablet+1

Z =I {E ,… ,E }t+1,1 t+1,j SI Tablet

Tablet+1 Et+1;1 ZI ZI

Tablet+1

This saves around bits for every island, since is no longer stored. The drawback

of this optimization is that it makes the plotting algorithm and data format more

complicated as it's not straightforward to implement, and requires more passes over the

plot. The matching function should try to maximize the size of islands, making this

optimization as insignificant possible.

The number of islands in a random graph of nodes and edges is

Although not random, the matching function below adds more "randomness" to matches, making

the number of islands very close to the random graph. Unfortunately, during

backpropagation up to 20% of entries in a table are dropped, and thus it is no longer a

graph of nodes and edges. Experimentally, this increases the number of islands to

 or , and thus inlining is a viable optimization.

Matching Function Requirements

Let's consider an underlying graph of a table: the digraph where each node is an entry and

an edge exists if that pair of entries is a match.

There are two main motivations for the matching function:

Efficiency: All matches can be found efficiently. Generally this means that:

the set of matches to search is quasilinear to the number of entries, and

the matches can be made to be local to some region of the disk so as to minimize

disk seeks.

No small-length cycles: In the underlying graph (considering each edge as

undirected), 4-length cycles don't exist, as small length cycles can be compressed

later (see: Cycles attack)

The first requirement can be fulfilled by only matching things close together under some

ordering of entries.

The second requirement is fulfilled by requiring the underlying graph to be a subset of

some overlay graph that doesn't have small-length cycles (as any subset of this graph will

also not have small-length cycles).

Focusing on the second requirement, consider for parameters , nodes from

, and edges in the overlay graph given by:

for all .

Consider a cycle in this graph of length (when edges are considered undirected). We must

have forward edges and reverse edges. Thus, for the 's of the forward edges and the

's of the reverse edges, and up to parity bits (and),

k Et+1;1

N N

N ∗ ≈
k=2

∑
∞

k! ∗ e2k
k ∗ 2k−2 k−1

0.026N

N N

0.06N 0.07N

(B,C) Z× Z ×B

ZC

(i, b, c) → (i+ 1, b+ r, c+ (2r + i%2))2

0 ≤ r < 64 = param_M

4
2 2 ri

r̄i p ∈i {0, 1} =p̄i 1 − pi

r −
i=1

∑
2

i ≡r̄i 0 (mod B)

(2r +
i=1

∑
2

i p) −i
2 (2 +r̄i p) ≡i

2 0 (mod C)

With a simple program (or by careful analysis), we can verify there are no 4-cycles:

from itertools import product
B, C, M = 119, 127, 64
for r1, r2, s1, s2 in product(range(M), repeat = 4):
 if r1 != s1 and (r1,r2) != (s2,s1) and (r1-s1+r2-s2) % B == 0:
 for p1, p2 in product(range(2), repeat = 2):
 assert ((2*r1+p1)**2 - (2*s1+p1)**2 +
 (2*r2+p2)**2 - (2*s2+p2)**2) % C != 0

Minimum and maximum plot sizes

The minimum plot size is important to prevent grinding attacks. If is small, an attacker

could regenerate an entire plot in a short period of time. For a proof of space to be

valid, the proof must be generated almost immediately, and a plot size which allows

generating a plot during proving, should not be possible. There are practical

considerations for choosing the minimum size as well. If the plot size is too small it

could be possible to use a very expensive computer (a lot of memory, CPU, etc) to quickly

generate multiple plots for each challenge - this could work as proof of space, but the

cost of this attack makes it impractical.

The maximum plot size is chosen at 50, a conservative maximum even accounting for future

storage improvements, while allowing everything to be represented in 64 bits.

Expected number of proofs

Call a tuple weakly distinct if all the following conditions hold:

Given a weakly distinct tuple chosen uniformly at random and modeling all

functions as random, that tuple is a valid proof for a challenge with probability

, since all matching conditions are independent. Also, note that the number of

weakly distinct tuples is approximately , as .

Furthermore, a tuple that is not weakly distinct cannot be a valid proof, since matches

never occur for the same left and right halves (ie. is always .)

Thus, the expected number of proofs per challenge is .

Using ChaCha8 and BLAKE3

A random function is required for the definition of proofs of space from Beyond Hellman.

ChaCha8 and BLAKE3 are used due to their efficient software implementations. There are

assembly implementations of these algorithms that use SIMD instructions.

The output of a stream cipher (ChaCha8) or a cryptographic hash function (BLAKE3) is

assumed to be irreversible and indistinguishable from random, so we may assume that all

functions are random and one-way as well.

k

(x , x ,… , x)1 2 64

⎩⎪⎪
⎪⎪
⎪⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪⎪
⎧x = x , x = x , x = x ,… , x = x1 2 3 4 5 6 63 64

(x , x) = (x , x), (x , x) = (x , x),… , (x , x) = (x , x)1 2 3 4 5 6 7 8 61 62 63 64

(x , x , x , x) = (x , x , x , x),… , (x ,… , x) = (x ,… , x)1 2 3 4 5 6 7 8 57 60 61 64

…
(x , x ,… , x) = (x ,… , x)1 2 32 33 64

(x ,… , x)1 64

fi p =
2−64k Mi

W = 264k 2 ≫k 64

M(x, x) False

W ∗ p ≈ 2 ∗64k 2 =−64k 1

f

ft

Quality String

The quality string along with the challenge can be hashed to create a unique

random number, or "lottery ticket", to be used for blockchain consensus.

The reason why only two out of the 64 proof values are used, is that reading two values

requires lookups on disk, as opposed to lookups: only one branch is followed through

the tree, as opposed to every branch. A farmer running proof of space in a blockchain, may

check their plot every time they see a new block or a new challenge. However, most of the

time, they will not win the block, and their proof of space quality will not be good

enough. Therefore, we can avoid the 64 disk lookups that are required for fetching the

whole proof. Two adjacent values can be used since they are stored together on disk and

therefore additional disk seeks are not needed compared to only reading one.

It is important that the choice of which values must be fetched depends on the

challenge. If the first two x values were always used, an attacker could compute a

farmer's plot, and save for all the proofs in the plot, and be able to compute

qualities with significantly less storage than the full plot. This would allow the

attacker, for example, to withhold blocks that benefit others.

Furthermore, since the farmer does not know the challenge in advance the qualities cannot

be precomputed.

During the plotting process, entry data is compressed by reordering tuples, which means

the ordering of the proof values is lost. The quality that the prover computes (by

traversing back through the tables) is based on this modified ordering. Therefore, the

verifier must perform this calculation to retrieve the efficient ordering used by the

prover.

Plot seed

The is a 32 byte value which is used to deterministically seed the whole plot.

The 32 bytes are used as the key for ChaCha8 in .

Plotting algorithm cache locality

Since proof of space plots are meant to be very large (due to the minimum), the plotting

algorithm should require significantly less memory than disk space. In order to accomplish

this, lookup tables of size should not be necessary for plotting, and random points

on disk should not be read frequently.

This is particularly important in the Forward Propagation phase, where pairs of entries

and must be compared for matching. One of the matching requirements is that the

 of is one greater than that of . Therefore, in the Forward Propagation

phase we sort by / output.

In the Compression Phase, positions to previous table entries are based on output

sorting but, to save space, they are converted to positions to tables based on

sorting. Doing this mapping cannot be done with a lookup table, so we first sort by the

new sort criteria, write the index of each new entry, and then sort by the old criteria

again so we can iterate through the next table. A small window is used, which requires

very little memory.

(x ∥2a+1 x)2a+2

x

6 64

x

x

x , x1 2

x

plot_seed
f1

k

O(N)

E1

E2

bucket_id E2 E2

bucket_id f

f

line_point

Potential Optimizations

Variable Sized Parks

The current implementation puts sections of empty space between parks, which is wasteful

and can be optimized. In the following discussion, a "house" prepends each park and

contains additional metadata for that park, and recall that houses in the original scheme

contained the value of the first entry as in the fixed width park scheme.

In an alternate scheme that has "park alignment", we'll have houses also containing a

fixed number of bits to store "park alignment", and parks are written sequentially,

"skipping" over the allocated space of any house. This saves space as it mitigates the

 loss and replaces it with an cost,

which is substantially cheaper.

When seeking to a park, we will read some extra bits (of them)

to the left and right of the houses that delimit the park, so that we adequately cover an

area enough to read the entire contents of the park.

The issue with this approach is that the maximum (absolute value) deviation of a random

walk of N steps is roughly . We expect that would

have to be way too big [bigger than the space we would like to read from disk] to

compensate for these cases.

One way to solve this approach is to have a variable number of entries per park.

Specifically, suppose each park (except possibly the last) either has or

 entries. For each house, we need 1 extra bit to represent this size difference of the

following park, and we also need to store the sum of these size differences (-1 or 1). The

idea is that when our park alignment is negative, we make bigger parks; and when our park

alignment is positive, we make smaller parks. This reduces the expected

 significantly to make this approach feasible.

Additionally on the side, we need “house hinting”. Suppose EPP = 2048, and we want the

2500th entry. We would guess that it is in the second park, since roughly speaking entries

1-2048 are in the first park, 2049-4096 are in the second park, and so on. Our idea is

that whenever our guess would be wrong, we create a hint in memory that specifies an

interval of entries for which we should modify our guess by some number. We can binary

search this hint table before seeking to a park.

In reality, the hint table will be very small, as the size differences need to have an

absolute value exceeding EPP for us to record a hint. As an implementation level detail,

we actually need to read two adjacent parks worth of information to ensure our hint table

is small - if we don’t, our hint table will be very big as every change of sign between

the running sum of size differences will cause a new hint for entries near the borders of

each park.

Cycles attack

Considering the underlying graph of a table (see Matching Function Requirements), it's

possible to write, say, 3 of the associated entries corresponding to edges of a 4-cycle to

disk plus specify how to walk the edges of this cycle (possibly some edges walked in

reverse) to find the last edge (entry).

e0

N ∗ 8σ () ∗
EPP
N ⌈(log (MAX_PARK_ALIGNMENT))⌉2

MAX_PARK_ALIGNMENT

N ∗ π/2 MAX_PARK_ALIGNMENT

EPP − 1 EPP +
1

MAX_PARK_ALIGNMENT

Because there are no 4-cycles (or 5-cycles, because each edge changes the parity of the

first coordinate), the minimum length cycle is a 6-cycle.

For every cycle on an island in the graph of a table it is possible to save one of the

edges by specifying how to walk the edges to find the the pair instead of giving the

counterpart directly. There are two types of cycles which occur: 4-cycles which happen

when there's a bucket which has two things in it and has at least two things it connects

to, and 6-cycles, which can happen with two buckets with two things in them being

connected but are more common as happenstance through the graph as a whole. The cycles

which depend on multiple things in the same bucket can be made much less common by

increasing the degree of the graph (and correspondingly the B-group size) at the direct

linear expense of CPU time. The length of other types of cycles can be increased by

increasing the C-group size, at the expense of requiring correspondingly more cache space

when plotting.

Hellman Attacks

Hellman attacks, or time space tradeoffs, refer to techniques where certain checkpoints

are stored, allowing reversal of random functions using only time and space, or

different amounts based on the desired tradeoff. As mentioned in Beyond Hellman, this

construction makes Hellman attacks less powerful, but they are still a worthwhile

optimization for the first table.

The basic Hellman attack on works as follows: Instead of storing bits per entry

for Tabes 1 and 2, we don't store anything for , and for , we store

instead of , which were positions into for and .

When looking up a quality or proof, we can evaluate and , which will be very

close to and respectively, due to the matching function. This still requires

inversion of , which we attempt on each of the 32 potential values.

To invert, we store checkpoint chains as in Rainbow Tables[2], check which chain we're on,

and evaluate it.

There can also be collisions and false positives, i.e we invert but get the wrong

input. This can be fixed by also checking that all retrieved values also match with

respect to .

If is fully removed, of space from the final plot file is saved which makes

this potentially the most significant optimization.

A caveat of this optimization, is that it potentially requires a large amount of memory to

set up the rainbow tables. This is due to the fact that the algorithm needs the check

whether each value that is being looked at, is already included or not included in the

saved chains. Furthermore, if not all values are covered, plot success rate will

decrease. In order to cover all values a significant amount of memory is required for

proving to store all of these remaining x values.

Potentially some tradeoffs can be performed to make the attack require less CPU and less

memory, which slightly decrease the efficiency of the plot.

Dropping bits in x values / line points

O(N)2/3

Table1 k

Table1 Table2 x , x1 3

pos , posl r Table1 x , x1 2 x , x3 4

f (x)1 1 f (x)1 3

f (x)1 2 f (x)1 4

f1 f1

f1

x

f2

Table1 13%

x

x

x

https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf

A fraction of the stored line points in could have bits dropped and, on recovery,

all possible values of the dropped bits could be brute forced. Instead of storing deltas

for bit line points , we store deltas for . This saves around bits from

each entry, and requires more computation. To recover the line point, we find the

truncated line point, and then try each possibility for the dropped bits, until we find a

resulting pair such that is true. Note that false positives are

possible, but they are rare, and can be checked by evaluating .

This optimization, like Hellman Attacks, relies on using CPU to minimize .

Furthermore, it does not seem practical for anything past , and perhaps a few bits

from . If an attacker tries to truncate bits from all tables, the number of disk

seeks becomes exponential (as well as the computation required).

Reduce Plotting Space overhead

During the Forward Propagation phase, the metadata is only needed to compute the next

table. Once the next table is computed, the metadata can be dropped, to save disk space.

Furthermore, for each pair of tables during Forward Propagation, the left table entries

which don't lead to any matches can be immediately dropped. Although backpropagation drops

any entry which doesn't lead to an match, most entries can be dropped in Forward

Propagation using the above stated method.

Both of these optimizations save working space, but increase the number of passes which

must be performed, and thus increase plot size. For very large plots, where sort times

matter more than number of passes, these optimizations may also yield faster plot times.

Mixing passes

Most of the time when a sort on disk is completed the final pass in memory is written out

to disk. If there is an operation which must be performed on the sorted table (such as

during Forward Propagation), it is more efficient to perform this operation while sorting,

to minimize disk seeks, as opposed to waiting until the entire table is sorted.

Every pos_R value is used at least once

Our method does not take into account that every value is used at least once per

table, offering further compression.

To give a good approximation of the theoretical loss from not considering this

information, consider a table of entries, where each entry is independently chosen as

pointing to two different positions from . The information content of the table is

.

Let be the set of tables such that no entry points to . Clearly, ,

, , and so on. Thus, by the principle of inclusion-

exclusion:

Table1 z

2k L (L)
k−z
trunc 2

z

2z

(x , x)1 2 M(x , x)1 2

f2

Table1
Table1

Table2 z

f7

pos_R

N

[N]
N log (2

N)

ei i ∣e ∣ =i (2
N−1)

N
∣e ∩i

e ∣ =j (2
N−2)

N
∣e ∩i e ∩j e ∣ =k (2

N−3)
N

The information content of tables where every position is pointed to by at least one entry

is . The difference per entry is , or 0.21 bits per

entry. Therefore, this information cannot be used to significantly reduce plot size.

Pruning bad x values

Most entries stored in the plot cannot be removed without without reducing the per-byte

effectiveness of the plot. However, removing entries which lead to few or only one final

solution might lead to an increase in the per-byte effectiveness. This will be a small

number of entries, since the chances of finding multiple such entries that contribute to

the same final output gets exponentially lower from to .

Replotting Attack

Some plots will by random noise have greater per-byte effectiveness. The amount of this is

proportional to the square root of the size of the plot with a small constant factor so

the potential gains aren't high. Furthermore, this requires evaluating the entire forward

propagation phase. If a farmer has multiple plots, and wants to delete one of them, the

least effective one can be reclaimed first.

Reduce Checkpoint table size

By using a more efficient encoding for storing deltas of values in the table, a

theoretical maximum of up to 2 bits per entry can be saved (current size of table).

This is around 1% for .

Faster Disk

Plotting on an SSD or a ramdisk will provide massive performance improvements, especially

for large plots, where sort on disk becomes the bottleneck.

Multithreading

Multithreading can provide significant performance improvements. The CPU usage of most

phases is completely parallelizable, and disk I/O blocking can be minimized.

References

e
∣
∣∣
∣

i=1

⋃
N

i∣
∣∣
∣
= (−1) e

k=1

∑
N

k+1

I⊆[N] : ∣I∣=k

∑
∣
∣∣
∣

i∈I

⋂ i∣
∣∣
∣

= (−1)
k=1

∑
N

k+1(
k

N
)(

2
N − k

)
N

= (−1) (1 −) (1 −)(
2
N

)
N

k=1

∑
N

k+1(
k

N
)

N

k N

N − 1
k N

≈ (−1) e(
2
N

)
N

k=1

∑
N

k+1(
k

N
) −2k

= ((1 − e))(
2
N

) −2
N

N (log +(2
N) log(1 − e))−2 −log(1 − e)−2

Table7 Table1

f7 C3
C3

k = 33

[1] Hamza Abusalah, Joel Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, Leonid

Reyzin: Beyond Hellman’s Time-Memory Trade-Offs with Applications to Proofs of Space

(2017) https://eprint.iacr.org/2017/893.pdf

[2] Philippe Oechslin: Making a Faster Cryptanalytic Time-Memory Trade-Off (2003)

https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf

[3] Krzysztof Pietrzak, Bram Cohen: Chia Greenpaper (2019)

https://www.chia.net/assets/ChiaGreenPaper.pdf

[4] Mart Simisker: Asymmetrical Number Systems (2017)

https://courses.cs.ut.ee/MTAT.07.022/2017_fall/uploads/Main/mart-report-f17.pdf

[5] Daniel J. Bernstein: The ChaCha family of stream ciphers (2008)

https://cr.yp.to/chacha.html

https://eprint.iacr.org/2017/893.pdf
https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://courses.cs.ut.ee/MTAT.07.022/2017_fall/uploads/Main/mart-report-f17.pdf
https://cr.yp.to/chacha.html

